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”The career of a young theoretical physicist consists of treating the harmonic oscillator in

ever-increasing abstraction.” – Sidney Coleman

i



Quantum field theory is the most complete and consistent theoretical framework that provides

a unified description of quantum mechanics and special relativity. In the limit ~ → 0 we obtain

relativistic classical fields which can be used to describe for example electrodynamics. In the limit of

small velocities v/c � 1, we obtain non-relativistic quantum mechanics. Finally in the limit ~ → 0

and v/c� 1 we obtain the description of non-relativistic classical fields such as sound waves.

Fields are described by a function which assigns a value to every point on the base manifold which

we consider. In this course we will be mostly looking at relativistic quantum field theory, which is

defined in 3+1 -dimensional Minkowski space-time. Most results can be straightforwardly translated

to other systems, like 2-dimensional systems in condensed matter physics.

The notes are very brief and obviously only give an introduction to quantum field theory. The

following books provide more detailed explanations and also more in-depth knowledge about quantum

field theory.

1. L. Ryder, ”Quantum Field Theory”

2. M. Srednicki, ”Quantum Field Theory”

3. S. Weinberg, ”The Quantum Theory of Fields”, Vol. 1

4. M. Peskin, D. Schroeder, ”An Introduction to Quantum Field Theory”

5. D. Bailin, ”Introduction to Gauge Field Theory”

6. C. Itzykson, J-B. Zuber, ”Quantum Field Theory”

7. A. Zee, ”Quantum Field Theory in a Nutshell”

8. M. Schwartz, ”Quantum Field Theory and the Standard Model”

Throughout the notes we will use natural units

~ = c = kB = 1

and the signature (+−−−) for the metric. Thus length scales and time are measured with the same

units

[`] = [t] =
1

[m]
=

1

[E]
=

1

[T ]
= eV−1

which is the inverse of energy. Temperature is measure in the same units as energy.

Often we will use formal manipulations which require a more mathematical treatment. In quantum

field theory we will encounter many divergences which have to be regulated. This is generally possible

by considering a finite volume V and to quantize the theory in this finite volume. In the infinite

volume limit we obtain V → (2π)3δ(3)(0) which is divergent. See arXiv:1201.2714 [math-ph] for some

lecture notes with a more rigorous discussion of different mathematical issues in quantum field theory.
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1 Spin 0 – scalar field theory

1.1 Relativistic classical field theory

An intuitive derivation of the Klein-Gordon equation. Any theory of fundamental physics has to be

consistent with relativity as well as quantum theory. In particular a particle with 4-momentum pµ

have to satisfy the relativistic dispersion relation

pµpµ = E2 − ~p2 = m2 . (1.1)

Following the standard practice in quantum mechanics we replace the energy and momentum by

operators

E → i~∂t ~p→ −i~~∇ (1.2)

and postulate the wave equation for a relativistic spin-0 particle

m2φ = (i∂t)
2 − (−i~∇)2φ = −(∂2

t − ~∇2)φ (� +m2)φ = 0 (1.3)

which is the so-called Klein-Gordon equation. The Klein-Gordon equation is solved in terms of plane

waves exp(i~k · ~x ± iωkt) with ωk = (~k2 + m2)1/2 and thus the general solution is given by their

superposition

φ(x, t) =

∫
d3k

(2π)32ωk

(
a(k)ei

~k·~x−iωkt + b(k)ei
~k·~x+iωkt

)
(1.4)

The factor 1/ωk ensures that the field φ is a Lorentz scalar, i.e. invariant under orthochronous Lorentz

transformations (Λ0
0 ≥ 1). This can be directly seen from noticing that1∫ ∞

−∞
dk0δ(k2 −m2)θ(k0) =

1

2ωk
, (1.6)

since there is only one zero at k0 = ωk for k0 > 0. Thus we can rewrite the integration in terms of

d4kδ(k2 −m2)θ(k0) with the Dirac δ-function and the Heaviside step function θ which is manifestly

Lorentz invariant. For a real scalar field [φ(x, t) = φ∗(x, t)], the coefficients a and b are related by

b(k) = a∗(−k). Thus for a real scalar field we find

φ(x, t) =

∫
d3k

(2π)32ωk
a(k)e−ikµx

µ
+ a∗(k)eikµx

µ
(1.7)

where we changed the integration variable ~k → −~k for the second term. If we were to interpret

the solution as a quantum wave function, the second term would correspond to ”negative energy”

contributions.
1Note that ∫

dxδ(f(x)) =
∑
i

1

|f ′(xi)|
(1.5)

where xi are zeros of the function f .
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Using the representation of the δ function

(2π)3δ(3)(~k) =

∫
d3xei

~k·~x (1.8)

we can invert Eq. (1.7) to obtain∫
d3xeikµx

µ
φ(x) =

1

2ωk
a(k) +

1

2ωk
e2iωkta∗(k) (1.9)∫

d3xeikµx
µ
∂0φ(x) = − i

2
a(k) +

i

2
e2iωkta∗(k) (1.10)

and thus we obtain for the coefficients a(k)

a(k) =

∫
d3xeikµx

µ
[ωk + i∂0]φ(x) = i

∫
d3x eikµx

µ ↔
∂0 φ(x) . (1.11)

with f(x)
↔
∂x g(x) ≡ f(x)∂xg(x)− (∂xf(x))g(x).

1.2 Least action principle

This equation can also be derived from the least action principle using the following Lagrangian density

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 (1.12)

and thus the action S =
∫
dt
∫
d3xL. Consider a variation of the action with respect to the field φ

and the coordinates xµ

x′µ = xµ + δxµ φ′(x) = φ(x) + δφ(x) (1.13)

and thus the total variation of φ is ∆φ = δφ+ (∂µφ)δxµ. Variation of the action yields

δS =

∫
R
d4x′L(φ′, ∂µφ

′, x′)−
∫
R
d4xL(φ, ∂µφ, x) (1.14)

=

∫
R
d4x

(
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ) +

∂L
∂xµ

δxµ + L∂µδxµ
)

(1.15)

=

∫
R
d4x

(
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

)
δφ+

∫
R
d4x∂µ

(
Lδxµ +

∂L
∂(∂µφ)

δφ

)
(1.16)

=

∫
R
d4x

(
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

)
δφ+

∫
∂R
dσµ

(
Lδxµ +

∂L
∂(∂µφ)

δφ

)
(1.17)

where we used det(∂x
′µ

∂xλ
) = δµλ + ∂λδx

µ in the second line. If we demand on the boundary ∂R that

there is no variation in the fields δxµ = 0 and δφ = 0, we obtain the Euler-Lagrange equations

0 =
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

(1.18)

For a real scalar field the Euler-Lagrange equation is

0 = ∂µ
δL
δ∂µφ

− δL
δφ

= ∂µ∂
µφ+m2φ . (1.19)
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The conjugate momentum to the field φ is

π =
∂L
∂∂0φ

(1.20)

and the Hamiltonian density is obtained by a Legendre transformation

H = π∂0φ− L (1.21)

The Poisson brackets for two functionals L1,2 are defined as2

{L1, L2} =

∫
d3x

[
δL1

δπ(x, t)

δL2

δφ(x, t)
− δL1

δφ(x, t)

δL2

δπ(x, t)

]
. (1.23)

and thus the Poisson brackets for the field φ and conjugate momentum π are

{π(x, t), φ(y, t)} = δ3(x− y) (1.24)

{π(x, t), π(y, t)} = {φ(x, t), φ(y, t)} = 0 (1.25)

The equations of motion are as usual determined by Hamilton’s equations

∂0φ(x, t) = {H,φ(x, t)} ∂0π(x, t) = {H,π(x, t)} . (1.26)

The generalisation to an arbitrary number of fields is straightforward.

1.3 Symmetries and Noether’s theorem

For an arbitrary surface ∂R we can rewrite the second integral as∫
∂R
dσµ

(
Lδxµ +

∂L
∂(∂µφ)

δφ

)
=

∫
∂R
dσµ

[
∂L

∂(∂µφ)
∆φ−Θµ

νδx
ν

]
(1.27)

where we defined the energy-momentum tensor

Θµ
ν ≡

∂L
∂(∂µφ)

∂νφ− Lδµν . (1.28)

If the action is invariant (i.e. δS = 0) under the following symmetry transformation

δxµ = Xµ
νδω

ν ∆φ = φνδω
ν (1.29)

The surface term vanishes because δS = 0 and since δων is arbitrary

0 =

∫
∂R
Jµνdσµδω

ν =

∫
R
d4x∂µJ

µ
νδω

ν (1.30)

2The functional derivative of a functional is the straightforward generalisation of the ordinary derivative

δ

δf(t)
f(t′) = δ(t− t′) . (1.22)
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with the Noether current

Jµν =
∂L

∂(∂µφ)
Φν −Θµ

κX
κ
ν . (1.31)

As δωµ is arbitrary function and for sufficiently smooth Jµν we obtain

∂µJ
µ
ν = 0 . (1.32)

Thus we can define a conserved charge

Qν =

∫
V
d3xJ0

ν (1.33)

of the system which is conserved when integrating over the whole volume

dQν
dt

=

∫
d3x ∂0J

0
ν =

∫
d3x ∂iJ

i
ν =

∫
dσi J iν = 0 , (1.34)

where we used the conservation of the Noether current, ∂µJ
µ
ν = 0, in the second step. The last

equation holds because the current has to vanish at infinity.

1.3.1 Examples

Consider ∆φ = 0 and δxµ = aµ, where aµ is a translation in space-time. Noether’s theorem tells us

that the Noether current is

Jµν = −Θµ
κa

κ (1.35)

Time-translations, a0 6= 1, ai = 0 imply the conservation of energy

H =

∫
d3xΘ0

0 =

∫
d3x

[
∂L

∂(∂0φ)
∂0φ− L

]
(1.36)

and spatial translations similarly imply the conservation of momentum

Pi =

∫
d3xΘ0

i =

∫
d3x

∂L
∂(∂0φ)

∂iφ (1.37)

and thus we can interpret Θµ
ν as energy-momentum tensor.

The energy-momentum tensor as it is defined in Eq. (1.28) is not symmetric and also not unique.

We may add a term ∂λf
λµν with fλµν = −fµλν , because ∂µ∂λf

λµν vanishes due to f being antisym-

metric in µ, λ while the derivatives are symmetric. By choosing fλµν appropriately we obtain the

canonical energy-momentum tensor

Tµν = Θµν + ∂λf
λµν (1.38)

which is symmetric in µ, ν. The total 4-momentum of the system is the same, since∫
d3x∂λf

λ0ν =

∫
d3x∂if

i0ν =

∫
dσif

i0ν = 0 (1.39)

irrespective of the choice of f . The last equality holds because towards infinity the fields have to

sufficiently quickly go to zero, in order for the action to be normalizable and thus also any combination

of the fields ∂if
i0ν has to go to zero.
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1.4 Canonical quantization – free real scalar field

Before moving to quantizing a scalar field let us review the quantization of the harmonic oscillator.

The quantum harmonic oscillator is defined by the Lagrangian

L =
m

2
q̇2 − mω2

2
q2 (1.40)

We can directly determine the conjugate momentum, Hamiltonian and Poisson brackets using standard

techniques

p =
∂L

∂q̇
= mq̇ (1.41)

H = pq̇ − L =
1

2m
p2 +

mω2

2
q2 (1.42)

{p, q} = 1 {p, p} = {q, q} = 0 (1.43)

We obtain the quantum harmonic oscillator by replacing q and p by operators q̂ and p̂ = −i ddq and

the Poisson bracket by the commutator

Ĥ =
1

2m
p̂2 +

mω2

2
q̂2 (1.44)

[p̂, q̂] = −i [p̂, p̂] = [q̂, q̂] = 0 . (1.45)

We proceed in the analogous way for the real scalar field. The Lagrangian density for a free real scalar

field, generalized momentum, Hamiltonian density and Poisson brackets are given by

L =
1

2
∂µφ∂

µφ− m2

2
φ2 (1.46)

π = ∂0φ (1.47)

H =
1

2
∂0φ∂0φ+

1

2
∇φ · ∇φ+

m2

2
φ2 (1.48)

{π(x, t), φ(y, t)} = δ3(x− y) {π(x, t), π(y, t)} = {φ(x, t), φ(y, t)} = 0 . (1.49)

The Hamiltonian is positive definite and thus there is no problem with negative energies. We now

quantize the real scalar field and replace the field and its conjugate by hermitian operators which

satisfy the canonical (equal-time) commutation relations

[π(x, t), φ(y, t)] = −iδ3(x− y) [π(x, t), π(y, t)] = [φ(x, t), φ(y, t)] = 0 . (1.50)

Thus the coefficients a(k) in Eq. (1.7) become operators

φ(x, t) =

∫
d3k

(2π)32ωk

[
a(~k)e−ikµx

µ
+ a†(~k)eikµx

µ
]

(1.51)

=

∫
d3k

((2π)32ωk)1/2

[
a(~k)fk(x) + a†(~k)f∗k (x)

]
(1.52)
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with the positive frequency (energy) solutions

fk(x) =
e−ikx

((2π)32ωk)1/2
(1.53)

which form an orthonormal set ∫
d3xf∗k (x)i

↔
∂0 fk′(x) = δ(3)(~k − ~k′) . (1.54)

The operators a(k) and a†(k) satisfy the commutation relations

[a(k), a†(k′)] =

∫
d3xd3y(2π)3(4ωkωk′)

1/2[f∗k (x)i
↔
∂0 φ(x), φ(y)i

↔
∂0 fk′(y)] (1.55)

= i(2π)3

∫
d3xd3y(4ωkωk′)

1/2 (1.56)

×
(
f∗k (x, t)i∂0fk′(y, t)[π(x, t), φ(y, t)] + i∂0f

∗
k (x, t)fk′(y, t)[φ(x, t), π(y, t)]

)
(1.57)

= (2π)3

∫
d3x(4ωkωk′)

1/2f∗k (x, t)i
↔
∂0 fk′(y, t) (1.58)

= (2π)32ωkδ
(3)(k − k′) (1.59)

Note that for ~k = ~k′, there is a divergence, δ(3)(0). We can formulate the quantum field theory in a

mathematically more rigorous way by quantizing the theory in a finite volume V . In this case, the

integrals are replaced by sums and (2π)3δ(3)(0)→ V . See the textbook ”Quantum Field Theory” by

Mandl and Shaw for a discussion in terms of fields quantized in a finite volume. However this breaks

Lorentz invariance and for simplicity in this course we will always work with the infinite volume limit

directly using formal manipulations, but keep in mind that we can always go to a finite volume to

regularize the theory. Similarly we can derive the other commutation relations

[a(k), a(k′)] = [a†(k), a†(k′)] = 0 . (1.60)

The operators a(k) and a†(k) play a similar role to the ladder operators for the quantum harmonic

oscillator. We define the number operator for the wave with momentum k

(2π)32ωkδ
3(0)N(k) = a†(k)a(k) . (1.61)

The number operator N(k) satisfies the following commutation relations

[N(k), a†(k)] = a†(k) [N(k), a(k)] = −a(k) (1.62)

which are straightforward to show, e.g. the first one follows from

(2π)32ωkδ
3(0)[N(k), a†(k)] = [a†(k)a(k), a†(k)] (1.63)

= a†(k)[a(k), a†(k)] + [a†(k), a†(k)]a(k) (1.64)

= (2π)32ωkδ
3(0)a†(k) (1.65)
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Thus if |n(k)〉 is an eigenstate of N(k) with eigenvalue n(k) then the states a† |n(k)〉 and a(k) |n(k)〉
are also eigenstates of N(k) with eigenvalues n(k) + 1 and n(k) − 1 respectively. This justifies the

interpretation of the operator N(k) as a particle number (density) operator for momentum k. The

number operators for different momenta k commute

[N(k), N(k′)] = 0 (1.66)

and thus eigenstates of the operators N(k) form a basis. Similar to the quantum harmonic oscillator

there is a ground state energy. It gives an infinite contribution to the energy when integrating over

all momenta

H =

∫
d3k

(2π)32ωk
ωka

†(k)a(k) + ε0V (1.67)

where we interpreted (2π)3δ3(0) as volume V and ε0V denotes the zero-point energy with

ε0 =
1

2

∫
d3k

(2π)3
ωk . (1.68)

As only energy differences matter in the absence of gravity, we can subtract the zero point energy and

redefine the Hamiltonian as

: H :=

∫
d3k

(2π)32ωk
ωka

†(k)a(k) (1.69)

which is formally equivalent to writing all annihilation to the right of the creation operators. This

is denoted normal ordering and we define the normal ordered product of operators AB by : AB :.

Similarly the normal-ordered momentum is given by

: Pi :=

∫
d3k

(2π)32ωk
kia
†(k)a(k) . (1.70)

Thus the energy is always positive given that the particle number does not become negative. This

does not occur given that the norm of the states in the Hilbert space have to be non-negative

[a(k) |n(k)〉]† [a(k) |n(k)〉] =
〈
n(k)|a†(k)a(k)|n(k)

〉
= (2π)32ωkδ

3(0) 〈n(k)|N(k)|n(k)〉 (1.71)

= (2π)32ωkδ
3(0)n(k) 〈n(k)|n(k)〉 ≥ 0 .

Thus as a(k) reduces n(k) by 1, there is a ground state |0〉 with

a(k) |0〉 = 0 (1.72)

which does not contain any particles N(k) |0〉 = 0 of momentum k. The operator a(k) and a†(k) are

commonly called annihilation and creation operators, because they annihilate and create one particle

with momentum k, respectively.

The one-particle state |k〉 = a†(k) |0〉 is normalized as〈
k|k′

〉
=
〈

0|a(k)a†(k′)|0
〉

=
〈

0|[a(k), a†(k′)]|0
〉

= (2π)32ωkδ
3(k − k′) (1.73)
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where we used the commutation relation3 of the creation and annihilation operators and the nor-

malization of the vacuum state 〈0|0〉 = 1. The one-particle wave function ψ(x) for a particle with

momentum p is

ψ(x) ≡ 〈0|φ(x)|p〉 =

∫
d3k

(2π)32ωk

[
〈0|a(k)|p〉 e−ikx +

〈
0|a†(k)|p

〉
eikx

]
= e−ipx . (1.74)

1.5 Complex scalar field

So far we considered a real scalar field. For a complex scalar field the discussion is very similar, but

there are some important differences. The Lagrangian of a free complex scalar field φ is given by

L = ∂µφ
†∂µφ−m2φ†φ (1.75)

The Lagrangian is invariant under an internal symmetry φ→ eiαφ and thus there is a Noether current.

For convenience we replace α→ −q and thus obtain

Jµ = −iq
[
(∂µφ

†)φ− (∂µφ)φ†
]

= iqφ†
↔
∂µ φ (1.76)

and a conserved charge

Q = iq

∫
d3xφ†

↔
∂t φ . (1.77)

The Euler-Lagrange equations and conjugate momenta are

(� +m2)φ = 0 (� +m2)φ† = 0 (1.78)

π =
∂L
∂φ̇

= φ̇† π† =
∂L
∂φ̇†

= φ̇ (1.79)

The general solution for the fields φ and φ† are given by

φ(x, t) =

∫
d3k

(2π)32ωk

(
a(k)e−ikx + b†(k)eikx

)
φ†(x, t) =

∫
d3k

(2π)32ωk

(
a†(k)eikx + b(k)e−ikx

)
.

(1.80)

We quantize it in the usual way, but we have to keep in mind that φ and φ† are independent. The

equal time commutation relations are

[π(x, t), φ(y, t)] = [π†(x, t), φ†(y, t)] = −iδ3(x− y) (1.81)

while all other equal time commutation relations vanish. This leads to the following commutation

relations for the operators a(k) and b(k)

[a(k), a†(k′)] = [b(k), b†(k′)] = (2π)32ωkδ(~k − ~k′) (1.82)

3Note that some textbooks use a non-covariant normalization of the commutation relation [a(k), a†(k′)] = δ(k − k′).
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where a(k) and b(k) are annihilation operators. Thus there are two types of particles, a and b, with

number operators and Hamiltonian

(2π)32ωkδ
3(0)Na(k) = a†(k)a(k) (2π)32ωkδ

3(0)Nb(k) = b†(k)b(k) (1.83)

H =

∫
d

d3k

(2π)32ωk
ωk

[
a†(k)a(k) + b†(k)b(k)

]
. (1.84)

Thus the particles both have the same positive energy, but they have equal and opposite charges,

because the charge operator is given by

Q = q

∫ ∫
d3k

(2π)32ωk

[
a†(k)a(k)− b†(k)b(k)

]
. (1.85)

Otherwise their properties including mass are equivalent. They form a pair of particle and antiparticle.

The existence of antiparticles is a general feature of relativistic quantum field theory which we will

encounter later as well for Dirac fermions.

1.6 Lehmann-Symanzik-Zimmermann (LSZ) reduction formula

Consider a real scalar field theory. States in a free theory (i.e. which contain at most terms quadratic

in the fields) are constructed by acting with the creation operators on the vacuum. A one-particle

state is given by

|k〉 = a†(k) |0〉 (1.86)

where the creation operator can be written in terms of the field operator as derived in Eq. (1.11)

a†(k) =

∫
d3x e−ikx (ωk − i∂0)φ(x) = −i

∫
d3x e−ikx

↔
∂0 φ(x) (1.87)

and similarly

a(k) =

∫
d3x eikx (ωk + i∂0)φ(x) . (1.88)

We can define the creation operator of a particle localized in momentum space near ~k1 and in position

space near the origin by

a†1 =

∫
d3kf1(k)a†(k) (1.89)

where the function f1 describes the wave packet of the particle, which we take to be a Gaussian with

width σ

f1(k) ∝ exp

(
−(~k − ~k1)2

2σ2

)
(1.90)

In the Schrödinger picture the state a†1 |0〉 will propagate and spread out. The two particles in a two-

particle state a†1a
†
2 |0〉 with k1 6= k2 will be widely separated for t→∞. The creation and annihilation
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operators will be time-dependent. A suitable initial (final) state of a scattering experiment will be

|i〉 = lim
t→−∞

a†1(t)a†2(t) |0〉 ≡ a†1(−∞)a†2(−∞) |0〉 (1.91)

|f〉 = lim
t→∞

a†1′(t)a
†
2′(t) |0〉 ≡ a

†
1′(∞)a†2′(∞) |0〉 (1.92)

The scattering amplitude is then given by 〈f |i〉. Note however that the creation and annihilation

operators in the scattering amplitude are evaluated at different times. We thus have to relate them

to each other.

a†1(∞)− a†1(−∞) =

∫ ∞
−∞

dt∂0a
†
1(t) fundamental theorem of calculus (1.93)

=

∫
d3kf1(k)

∫
d4x∂0

(
e−ikx(ωk − i∂0)φ(x)

)
(1.94)

= −i
∫
d3kf1(k)

∫
d4xe−ikx

(
∂2

0 + ω2
)
φ(x) (1.95)

= −i
∫
d3kf1(k)

∫
d4xe−ikx

(
∂2

0 + ~k2 +m2
)
φ(x) (1.96)

= −i
∫
d3kf1(k)

∫
d4xe−ikx

(
∂2

0−
←
∇

2
+m2

)
φ(x) (1.97)

= −i
∫
d3kf1(k)

∫
d4xe−ikx

(
∂2

0−
→
∇

2
+m2

)
φ(x) (1.98)

= −i
∫
d3kf1(k)

∫
d4xe−ikx

(
∂µ∂

µ +m2
)
φ(x) (1.99)

and similarly for the annihilation operator

a1(∞)− a1(−∞) = i

∫
d3kf1(k)

∫
d4xeikx

(
∂µ∂

µ +m2
)
φ(x) (1.100)

Thus we are in a position to evaluate the scattering amplitude, the matrix elements of the scattering

operator S,

Sfi ≡ 〈f |i〉 =
〈

0|T (a2′(∞)a1′(∞)a†1(−∞)a†2(−∞)|0
〉

(1.101)

= i4
∫
d4x1e

−ik1x1(∂2
1 +m2) . . . d4x2′d

4x2′e
ik2′x2′ (∂2

2′ +m2) 〈0|Tφ(x1) . . . φ(x2′)|0〉

where we inserted the time-ordering operator in the first step, then used the derived relation of the

creation and annihilation operators. The expression directly generalizes for more particles in the initial

and/or final state. The general result is called the Lehmann-Symanzik-Zimmermann (LSZ) reduction

formula, which relates the scattering amplitude to the expectation value of the time-ordered product

of field operators. The same holds in an interacting theory if the fields satisfies the following two

conditions

〈0|φ(x)|0〉 = 0 〈0|φ(x)|k〉 = e−ikx . (1.102)
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These conditions can always be satisfied by shifting and rescaling the field operator appropriately.

The two conditions ensure that the interacting one-particle states behave like free one-particle states.

In general the creation operator will create a mixture of one-particle and multi-particle states in

an interacting theory. However, it can be shown that multi-particle states separate from one-particle

states at the infinite past and future and thus we can consider scattering between (quasi-)free particles.

See the discussion in the book by Mark Srednicki for a rigorous argument why the same also holds in

an interacting field theory.

The S matrix is unitary because for two in-states |i〉 and |j〉 and the final (out-state) |f〉 we find∑
f

S∗jfSfi =
∑
f

〈j|f〉 〈f |i〉 = 〈j|i〉 = δij (1.103)

where we used the completeness of the out states |f〉. Thus the probability to scatter to any final

state |f〉 is unity. It is often convenient to write the S matrix as

S = 1 + iT (1.104)

where the identity refers to no scattering and the T matrix describes any (non-trivial) scattering.

Then unitarity translates into

1 = S†S = (1− iT †)(1 + iT ) = 1 + iT − iT † + T †T ⇒ T †T = −i(T − T †) = 2Im(T ) (1.105)

which is one form of the optical theorem. Next we develop tools to calculate correlation functions

such as 〈0|Tφ(x1) . . . φ(xn)|0〉.

1.7 Spin-statistics connection

Could we quantize the scalar field also with anticommutators instead of commutators? Consider spin-0

particles with the Hamiltonian

H0 =

∫
d3k

(2π)32ωk
ωka

†(k)a(k). (1.106)

The creation and annihilation operators either satisfy commutation or anticommutation relations

[a(k), a(k′)]∓ = [a†(k), a†(k′)]∓ = 0 [a(k), a†(k′)]∓ = (2π)32ωkδ
3(k − k′) (1.107)

Now construct a theory with local Lorentz-invariant interactions out of the non-hermitian fields

φ+(x, 0) =

∫
d3k

(2π)32ωk
e−i

~k·~xa(k) φ−(x, 0) =

∫
d3k

(2π)32ωk
ei
~k·~xa†(k)

(1.108)

φ±(x, t) = eiH0tφ±(x, 0)e−iH0t =

∫
d3k

(2π)32ωk
e∓ikxa(†)(k) (1.109)
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which are related by hermitian conjugation φ+ = (φ−)†. φ±(x, t) is the time-evolved field φ±(x, 0).

The field φ is invariant under proper orthochronous Lorentz transformations Λ

U(Λ)−1φ(x)U(Λ) = φ(Λ−1x) (1.110)

and thus also the creation (a†(k)) and annihilation (a(k)) operators as well as the fields φ±(x) are

Lorentz scalars. Construct an interaction Lagrangian density L1 which is local and Lorentz invariant.

The corresponding Hamiltonian density is denoted by H1 and H1 denotes the interaction Hamiltonian

in the Schrödinger picture

H1 =

∫
d3xH1(x, 0) (1.111)

where H1(x, 0) is a hermitian function of φ±(x, 0). The corresponding Hamiltonian density in the

interaction picture HI(x, t) is defined by the same function, but with φ±(x, 0) replaced by φ±(x, t),

since the interaction Hamiltonian is given by HI(t) = exp(−iH0t)H1 exp(iH0t).

Consider now a transition amplitude from a state |i〉 at t = −∞ to state |f〉 at t =∞

Tf←i =

〈
f |T exp

[
−i
∫ ∞
−∞

dtHI(t)

]
|i
〉
. (1.112)

The transition amplitude is only Lorentz invariant, if the time-ordering is frame independent. This

is trivially satisfied in the forward and backward lightcone for time-like separations of two events

(x − x′)2 > 0. However events with a space-like separation can have different temporal ordering.

Thus we have to require that the interaction Hamiltonian commutes with itself at different times for

space-like separations

[HI(x),HI(x′)] = 0 (x− x′)2 < 0 (1.113)

The interaction Hamiltonian densities are constructed of the fields φ±(x, t) and thus we have to

consider the commutator (anticommutator) of the fields φ± for space-like separations r2 ≡ (x−x′)2 < 0

[φ+(x), φ−(x′)]∓ =

∫
d3k

(2π)32ωk

d3k′

(2π)32ω′k
e−i(kx−k

′x′)[a(k), a†(k′)]∓ =

∫
d3k

(2π)32ωk
e−ik(x−x′) (1.114)

The integral is best evaluated for t = t′ using spherical coordinates. For t = t′, k = |~k| and r = |~x−~x′|

1

8π2

∫ ∞
0

dk

∫ 1

−1
d cos θ

k2

E(k)
eikr cos θ =

1

8π2

∫ ∞
0

dk
k2

E(k)

eikr − e−ikr

ikr
= − i

8π2r

∫ ∞
−∞

dk
k√

k2 +m2
eikr .

(1.115)

The integrand has branch cuts along the imaginary axis starting at ±im. We deform the integration

contour such that it wraps around the upper branch cut by defining ρ = ik/m and thus

[φ+(x), φ−(x′)]∓ =
m

4π2r

∫ ∞
1

dρ
ρe−ρmr√
ρ2 − 1

=
m

4π2r

∫ ∞
1

dρ

(
∂

∂ρ

√
ρ2 − 1

)
e−ρmr (1.116)

=
m

4π2r

{[√
ρ2 − 1e−ρmr

]∞
1
−
∫ ∞

1
dρ
√
ρ2 − 1

∂

∂ρ
e−ρmr

}
(1.117)

=
m2

4π2

∫ ∞
1

dρ
√
ρ2 − 1e−ρmr =

m

4π2r
K1(mr) ≡ C(r) (1.118)
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where K1 denotes the modified Bessel function. Thus the (anti)commutator is non-zero for any r > 0.

Consider now the linear combination φλ(x) = φ+(x) + λφ−(x) with an arbitrary complex number λ.

The (anti)commutators of φλ for space-like separations are then

[φλ(x), φ†λ(x′)]∓ = [φ+(x), φ−(x′)]∓ + |λ|2[φ−(x), φ+(x′)]∓ = (1− |λ|2)C(r) (1.119)

[φλ(x), φλ(x′)]∓ = λ[φ+(x), φ−(x′)]∓ + λ[φ−(x), φ+(x′)]∓ = λ(1∓ 1)C(r) (1.120)

Thus in order for both (anti)commutators to vanish and to have a suitable interaction Hamiltonian

built out of the field φλ we have to choose commutators with |λ| = 1. This brings us back to a real

scalar field if we choose λ = eiα, then e−iα/2φλ(x) = φ(x).

The same argument can be made for higher spin fields in any number of space-time dimensions4.

The allowed choice is always commutators for integer spin and anticommutators for half-integer spin.

Hence particles with integer spin are bosons and particles with half-integer spin fermions.

4For d = 2 there are more possibilities apart from fermions and bosons, so-called anyons.
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2 Feynman path integral

We develop the formulation of a quantum theory in terms of the Feynman path integral. Consider the

generalized coordinate operators Qa and their conjugate momentum operators Pa with the canonical

commutation relations

[Qa, Pb] = iδab [Qa, Qb] = [Pa, Pb] = 0 (2.1)

In a field theory the operators depend on the position x. Thus the index a labels on the one hand the

position x and on the other hand a discrete species index m. Thus the Kronecker delta function δab

should be interpreted as δx,m;y,n = δ(x − y)δm,n. As the Qa (Pa) commute among each other there

are simultaneous eigenstates |q〉 (|p〉) with eigenvalues qa (pa)

Qa |q〉 = qa |q〉 Pa |p〉 = pa |p〉 (2.2)

which are orthogonal and satisfy a completeness relation〈
q′|q
〉

= Πaδ(q
′
a − qa) ≡ δ(q′ − q)

〈
p′|p
〉

= Πaδ(p
′
a − pa) ≡ δ(p′ − p) (2.3)

1 =

∫
Πadqa |q〉 〈q| ≡

∫
dq |q〉 〈q| 1 =

∫
Πadpa |p〉 〈p| ≡

∫
dp |p〉 〈p| (2.4)

From the commutation relations (2.1) the scalar product

〈q|p〉 = Πa
1√
2π
eiqapa (2.5)

follows. In the Heisenberg picture5, where operators P and Q depend on time, the corresponding

completeness and orthogonality relations apply〈
q′; t|q; t

〉
= Πaδ(q

′
a − q) ≡ δ(q′ − q)

〈
p′; t|p; t

〉
= Πaδ(p

′
a − p) ≡ δ(p′ − p) (2.7)

1 =

∫
dq |q; t〉 〈q; t| =

∫
dp |p; t〉 〈p; t| 〈q; t|p; t〉 = Πa

1√
2π
eiqapa . (2.8)

Now we want to calculate the probability amplitude for a system to go from state |q; t〉 to state |q′; t′〉,
i.e. the scalar product 〈q′; t′|q; t〉. For an infinitesimally small time difference dt = t′ − t, it is given

by6 〈
q′; t′|q; t

〉
=
〈
q′; t|e−iH(Q(t),P (t))dt|q; t

〉
=

∫
dp
〈
q′; t|e−iH(Q(t),P (t))dt|p; t

〉
〈p; t|q; t〉 (2.9)

=

∫
Πa

dpa
2π

e−iH(q′,p)dt+i
∑
a(q′a−qa)pa (2.10)

5States |a〉 and operators A in the Heisenberg picture are related to operators in the ”Schödinger picture at fixed

time t = 0” by

|a; t〉H = eiHt |a〉S AH(t) = eiHtASe
−iHt . (2.6)

6The Hamiltonian is a function of the operators Q and P . In the Heisenberg picture, it is given by the same function

of Q(t) and P (t). We adopt a standard-form of the Hamiltonian where all operators Q appear to the left of the operators

P . Other conventions are possible (e.g. Weyl ordering) but will lead to slight differences in the definition of the Feynman

path integral.
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The last step is only possible for an infinitesimal time step, where exp(−iHdt) ' 1 − iHdt, because

we can neglect higher orders in dt. For a finite time interval, we split the the time interval in many

intermediate steps, t ≡ τ0, τ1, τ2, . . . , τN , τN+1 ≡ t′ with τk+1 − τk = δτ = (t′ − t)/(N + 1) and insert

the identity using the completeness relation for the states q. Hence the scalar product is given by the

constrained7 path integral〈
q′; t′|q; t

〉
=

∫
ΠN
k=1dq(τk) 〈q(τN+1); τN+1|q(τN ); τN 〉 〈q(τN ); τN |q(τN−1); τN−1〉 . . . 〈q(τ1); τ1|q(τ0); τ0〉

=

∫ [
ΠN
k=1dq(τk)

] [
ΠN
k=0Πa

dpk,a
2π

]
(2.11)

× exp

(
i
N+1∑
k=1

[∑
a

(qa(τk)− qa(τk−1))pa(τk−1)−H(q(τk), p(τk−1))dτ

])
N→∞−→

∫
q(t(′))=q(′)

DqDp exp

(
i

∫ t′

t

[∑
a

q̇a(τ)pa(τ)−H(q(τ), p(τ))

]
dτ

)
(2.12)

where we implicitly defined the integration measure∫
DqDp = lim

N→∞

∫ [
ΠN
k=1Πadqa(τk)

] [
ΠN
k=0Πa

dpa(τk)

2π

]
. (2.13)

Note that q and p in the path integral are ordinary functions (instead of operators). They are variables

of integration and do not generally satisfy the classical Hamiltonian dynamics. For convenience we

define the function

S =

∫ t′

t
dτ [q̇(τ)p(τ)−H] , (2.14)

which reduces to the action if the Hamiltonian dynamics holds.

2.1 Expectation values of operators

The Feynman path integral formalism allows to calculate expectation values of operators for interme-

diate times. Consider an operator8 O(t1) at time t1 with t < t1 < t′. For an infinitesimal time interval

[t, t+ dt] with an insertion of an operator at time t we find

〈
q′; t+ dt|O(P (t), Q(t))|q; t

〉
=

∫
Πa

dpa
2π

〈
q′; t|e−iH(Q(τ),P (τ))dt|p; t

〉
〈p; t|O(P (t), Q(t))|q; t〉 (2.15)

=

∫
Πa

dpa
2π

O(p, q)e−iH(q′,p)dt+i
∑
a(q′a−qa)pa , (2.16)

i.e. for every operator we insert the operator with Q and P replaced by the integration variables q

and p, respectively. Thus for a finite time interval t < t1 < t′ we simply obtain〈
q′; t′|O(P (t1), Q(t1))|q; t

〉
=

∫
DqDp O(p(t1), q(t1))eiS . (2.17)

7The initial and final state are fixed and not varied.
8The operators Qa have to be ordered to the right of the conjugate operators Pa.
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Then its expectation value can be expressed in terms of a path integral. Similarly for multiple operators

O1(t1) and O2(t2)∫
DqDp O1(p(t1), q(t1))O2(p(t2), q(t2))eiS =

〈q′; t′|O2(P (t2), Q(t2))O1(P (t1), Q(t1))|q; t〉 t1 < t2

〈q′; t′|O1(P (t1), Q(t1))O2(P (t2), Q(t2))|q; t〉 t2 < t1

(2.18)

The right-hand side can be expressed in terms of the time-ordered product of the operators

TO(t1)O(t2) =

O(t1)O(t2) t2 < t1

O(t2)O(t1) t1 < t2
. (2.19)

It straightforwardly generalizes to the time-ordered product of an arbitrary number of operators.〈
q′; t′|TO1(t1) . . . On(tn)|q; t

〉
=

∫
DqDpO1(t1) . . . On(tn)eiS . (2.20)

This motivates the introduction of external sources J and K for a the particle in quantum mechanics

(field in quantum field theory) 〈
q′; t′|q; t

〉
J,K

=

∫
DqDpei(S+Jq+Kp) (2.21)

where the products Jq and Kp should be understood Jq =
∫
dτJ(τ)q(τ). Functional derivatives (See

footnote 2) with respect to the external sources evaluated for vanishing external sources then generates

the time-ordered product of the corresponding operators. For example there is

1

i

δ

δJ(t1)

〈
q′; t′|q; t

〉
J,K

∣∣∣∣
J=K=0

=

∫
DqDpq(t1)eiS =

〈
q′; t′|Q(t1)|q; t

〉
(2.22)

1

i

δ

δK(t1)

〈
q′; t′|q; t

〉
J,K

∣∣∣∣
J=K=0

=

∫
DqDpp(t1)eiS =

〈
q′; t′|P (t1)|q; t

〉
(2.23)

1

i

δ

δJ(t2)

1

i

δ

δJ(t1)

〈
q′; t′|q; t

〉
J,K

∣∣∣∣
J=K=0

=

∫
DqDpq(t1)q(t2)eiS =

〈
q′; t′|TQ(t1)Q(t2)|q; t

〉
(2.24)

and in general

1

i

δ

δJ(t1)
. . .

1

i

δ

δK(tn)

〈
q′; t′|q; t

〉
J,K

∣∣∣∣
J=K=0

=
〈
q′; t′|TQ(t1) . . . P (tn) . . . |q; t

〉
. (2.25)

2.2 Vacuum-vacuum transition

So far we only considered position eigenstates as initial and final states. For other initial and final

states we have to multiply with the wave functions 〈q|φ〉 = φ(q) of these states and integrate over the

generalized positions. In particular if we consider transition amplitudes from the infinite past to the

infinite future

〈φ;∞|ψ;−∞〉J,K =

∫
dq′dq

∫
q(∞)=q′,q(−∞)=q

DqDpφ∗(q(∞))ψ(q(−∞))ei(S+Jq+Kp) (2.26)

=

∫
DqDpφ∗(q(∞))ψ(q(−∞))ei(S+Jq+Kp) (2.27)
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where we used that the unconstrained Feynman path integral is equivalent to the constrained path

integral when we integrate over the boundary conditions. An analogous expression holds for the

expectation value of operators.

As discussed in the derivation of the LSZ reduction formula we are specifically interested in vacuum

to vacuum transition amplitudes

〈0;∞|0;−∞〉J,K =

∫
DqDp ei(S+Jq+Kp) 〈0; out|q(∞);∞〉 〈q(−∞);−∞|0; in〉 (2.28)

Thus we have to evaluate the ground state wave functions in the infinite past and future. We consider

two concrete simple examples of free field theories, a quantum theory which reduces to the quantum

harmonic oscillator in the absence of interactions and a real scalar field, but before discussing them

we first introduce the Lagrangian version of the path integral.

2.3 Lagrangian version

In case the Hamiltonian is quadratic in the conjugate momenta it is a Gaussian integral and the

integral over the conjugate momenta can be performed exactly.9 If additionally the quadratic term

in the conjugate momenta does not depend on the generalized variables q the result will only involve

constants which can be absorbed in the definition of the integration measure

〈
q′; t′|q; t

〉
=

∫
q(t(′))=q(′)

Dq exp

(
i

∫ t′

t
dτL(q(τ), q̇(τ))

)
(2.30)

The function L(q̇, q) is computed by first determining the stationary point, i.e. by solving

0 =
δ

δpa(τ)

(∫ t′

t

[∑
a

q̇a(τ
′)pa(τ

′)−H(q(τ ′), p(τ ′))

]
dτ ′

)
= q̇a(τ)− ∂H(q(τ), p(τ))

∂pa(τ)
(2.31)

for p in terms of q and q̇, and then inserting the solution in integrand. This exactly mirrors the

procedure in classical mechanics, when we move from the Hamiltonian formulation to Lagrangian

formulation. The function L is the Lagrangian of the system. In the Lagrangian formulation the path

integral is explicitly Lorentz invariant. This situation is very common and in particular it applies for

the theories we are interested in for the rest of the lecture. Thus we will mostly use the Lagrangian

version in the following.

2.4 Quantum harmonic oscillator

The Hamiltonian and the Lagrangian of the harmonic oscillator take the form

H =
p2

2
+

1

2
ω2q2 L =

1

2
q̇2 − 1

2
ω2q2 (2.32)

9Note that the Gaussian integral is simply∫
dxe−( 1

2
xAx+bx+c) =

∫
dx′e−( 1

2
x′Ax′+c− 1

2
bA−1b) =

√
2π

A
e

1
2
bA−1b−c (2.29)

with x′ = x+A−1b.
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using convenient units where m = 1. The relevant commutation relations are

[p, q] = −i [p, p] = [q, q] = 0 (2.33)

and the annihilation operator is defined by

a =
√

ω
2

(
q + i

p

ω

)
. (2.34)

In position space the momentum operator is represented by p = −i∂/∂q. Then the ground state wave

function is determined by (a |0〉 = 0 in position space)

0 =

[
ωq +

∂

∂q

]
〈q|0〉 ⇒ 〈q|0〉 = Ne−

1
2
ωq2 (2.35)

with some normalization constant N . In particular this expression holds for the wave function in the

infinite future and past and thus the product of the two wave functions is given by.

〈0; out|q(∞);∞〉 〈q(−∞);−∞|0; in〉 = |N |2e−
1
2
ω[q(−∞)2+q(∞)2] (2.36)

= lim
ε→0+

|N |2e−
ε
2
ω
∫∞
−∞ dτq(τ)2e−ε|τ | (2.37)

where we used the final value theorem of the Laplace transform. Note that the wave function is

independent of the sources and thus only contributes a constant factor to the Feynman path integral.

As we are only interested in the limit ε→ 0 (and q(τ)2 is integrable for the harmonic oscillator), this

motivates the definition of the partition function

Z[J,K] = 〈0;∞|0;−∞〉J,K =
limε→0

∫
DqDp ei(S+Jq+Kp+iε

∫
dτ 1

2
q2)

limε→0

∫
DqDp ei(S+iε

∫
dτ 1

2
q2)

(2.38)

as a generating functional of all correlation functions for vacuum to vacuum transitions. The correla-

tion functions are obtained by taking derivatives with respect to the sources of Z[J,K]. Equivalently

we could discard the normalization factor and consider lnZ[J,K], because derivatives of lnZ[J,K] are

automatically correctly normalized such that vacuum-vacuum transition amplitude in the absence of

sources is normalized to unity, i.e. 〈0|0〉J=K=0 = 1. Similarly the partition function in the Lagrangian

formulation is given by

Z[J ] =
limε→0

∫
Dq ei(S+Jq+iε

∫
dτ 1

2
q2)

limε→0

∫
Dq ei(S+iε

∫
dτ 1

2
q2)

. (2.39)

It is convenient to consider the Fourier-transform of q

q̃(E) =

∫
dteiEtq(t) q(t) =

∫
dE

2π
e−iEtq̃(E) (2.40)

and equivalently for the source J(t). Thus the term in the exponent becomes

S + Jq +

∫
iε

2
q(τ)2 =

1

2

∫
dτ
dE

2π

dE′

2π
e−i(E+E′)τ

[(
−EE′ − ω2 + iε

)
q̃(E)q̃(E′) + J̃(E)q̃(E′) + J̃(E′)q̃(E)

]
=

1

2

∫
dE

2π

[
q̃(E)

(
E2 − ω2 + iε

)
q̃(−E) + J̃(E)q̃(−E) + J̃(−E)q̃(E)

]
(2.41)
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where we used that the τ -integration yields a factor 2πδ(E + E′) which has been used to perform

the E′-integration. The path integral measure is invariant under a shift of the integration variables,

q̃(E)→ q̃(E)− J(E)
E2−ω2+iε

and thus the amplitude is given by

Z[J ] =
exp

(
− i

2

∫
dE
2π

J̃(E)J̃(−E)
E2−ω2+iε

)
×
∫
Dq̃ exp

(
i
2

∫
dE
2π q̃(E)

[
E2 − ω2 + iε

]
q̃(−E)

)
Z[0]

(2.42)

= exp

(
− i

2

∫
dE

2π

J̃(E)J̃(−E)

E2 − ω2 + iε

)
. (2.43)

Taking an inverse Fourier transform we obtain

Z[J ] = exp

(
− i

2

∫
dtdt′J(t)G(t− t′)J(t′)

)
(2.44)

The Fourier transform of the kernel

G(t− t′) ≡
∫
dE

2π

e−iE(t−t′)

E2 − ω2 + iε
(2.45)

is a Green’s function of the harmonic oscillator(
∂2

∂t2
+ ω2

)
G(t− t′) = −δ(t− t′) (2.46)

which can be shown by a straightforward calculation of the left-hand side. The integral over the

energy E in the definition of the Green’s function can also be evaluated via a contour integral in the

complex E plane via the residue theorem.10 The two simple poles are at E = ± (ω − iε), i.e. the pole

for positive (negative) energy is shifted slightly to the lower (upper) half of the complex plane. For

t − t′ > 0 (t − t′ < 0) we close the contour via the lower (upper) half of the complex plane and thus

the residue theorem results in

G(t− t′) =
1

2ωi
e−iω|t−t

′| . (2.49)

The Green’s function can similarly be expressed in terms of the 2-point correlation function. The

second derivative with respect to the sources of the partition function is

〈0|TQ(t1)Q(t2)|0〉 =
1

i

δ

δJ(t1)

1

i

δ

δJ(t2)
Z[J ]

∣∣∣∣
J=0

=
1

i

δ

δJ(t1)

[
−
∫
dt′G(t2 − t′)J(t′)

]
Z[J ]

∣∣∣∣
J=0

(2.50)

= iG(t2 − t1) . (2.51)

10The residue theorem relates the contour integral along a positively oriented simple closed curve to the sum of the

residues of the enclosed poles ∮
γ

f(z)dz = 2πi
∑

Res(f, ak) . (2.47)

In particuar for a holomorphic function f the Cauchy integral theorem states

2πif(a) =

∮
γ

dz
f(z)

z − a . (2.48)
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We can similarly evaluate higher-order correlation functions. For the four-point function we find

〈0|TQ(t1)Q(t2)Q(t3)Q(t4)|0〉 = i2 [G(t2 − t1)G(t4 − t3) +G(t3 − t1)G(t4 − t2) +G(t4 − t1)G(t3 − t2)] .

(2.52)

Thus the 4-point correlation function is given by the sum of the Green’s functions of all possible

pairings. More generally 2n-point function is given by

〈0|TQ(t1) . . . Q(t2n)|0〉 = in
∑

pairings

G(ti1 − ti2) . . . G(ti2n−1 − ti2n) . (2.53)

All other n-point functions, i.e. with odd n vanish, because there is always one remaining source term.

Interactions from terms in the Lagrangian with higher powers of the generalized coordinate qn, n > 2

will change this result.

2.5 Free scalar field

The Hamiltonian and Lagrangian densities of a free real scalar field are given by

H =
1

2
π2 +

1

2
(∇φ)2 +

m2

2
φ2 L =

1

2
∂µφ∂

µφ− m2

2
φ2 (2.54)

with the conjugate momentum π = ∂0φ. The relevant equal-time commutation relations are

[π(x, t), φ(y, t)] = −iδ(x− y) [π(x, t), π(y, t)] = [φ(x, t), φ(y, t)] = 0 (2.55)

and the annihilation operator is defined as

a(k) =

∫
d3xeikx [iπ(x) + ωkφ(x)] . (2.56)

We follow the discussion of the quantum harmonic oscillator to obtain the ground state for a given

time t. In the field φ basis, the conjugate momentum is given by π(x, t) = −i δ
δφ(x,t) and thus the

defining equation of the ground state is

0 =

∫
d3xe−i

~k·~x
[

δ

δφ(x, t)
+ ωkφ(x, t)

]
〈φ; t|0〉 (2.57)

In analogy to the quantum harmonic oscillator we use a Gaussian ansatz for the ground state wave

function

〈φ; t|0〉 = N exp

(
−1

2

∫
d3xd3yE(x, y)φ(x, t)φ(y, t)

)
. (2.58)

It provides a solution provided that

0 =

∫
d3xeiωkte−i

~k·~x
[
−
∫
d3yE(x, y)φ(y, t) + ωkφ(x, t)

]
(2.59)
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is satisfied for all φ. We can rewrite it as follows

0 =

∫
d3xeiωkte−i

~k·~x
[
−
∫
d3yE(x, y)φ(y, t) +

∫
d3yδ(x− y)ωkφ(y, t)

]
(2.60)

=

∫
d3y

[
−
∫
d3xe−i

~k·~xE(x, y) + e−i
~k·~yωk

]
φ(y, t)eiωkt . (2.61)

As the equation holds for all φ and the expression in the square brackets is a smooth function, the

expression in the square brackets has to vanish identically. Inverting the Fourier transform we find

for the kernel

E(x, y) =

∫
d3k

(2π)3
ei
~k·(~x−~y)

√
~k2 +m2 . (2.62)

This also holds in the infinite past and future (even for an interacting real scalar field theory) and

thus

〈0; out|φ(x,∞);∞〉 〈φ(x,−∞);−∞|0; in〉 (2.63)

= |N |2 exp

(
−1

2

∫
d3xd3yE(x, y) [φ(x,∞)φ(y,∞) + φ(x,−∞)φ(y,−∞)]

)
(2.64)

= lim
ε→0+

|N |2 exp

(
− ε

2

∫
d3xd3y

∫ ∞
−∞

dτE(x, y)φ(x, τ)φ(y, τ)e−ε|τ |
)

(2.65)

This term will slightly shift the poles in the complex E plane and thus will determine the form of the

Green’s function like in the case of the quantum harmonic oscillator. The generating functional in

this case is given by

Z[J ] =

∫
Dφ exp

(
i
∫
d4x (L+ J(x)φ(x))− ε

2

∫
d3xd3ydτE(x, y)φ(x, τ)φ(y, τ)

)∫
Dφ exp

(
i
∫
d4xL − ε

2

∫
d3xd3ydτE(x, y)φ(x, τ)φ(y, τ)

) (2.66)

=

∫
Dφ exp

(
i
2

∫
d4xd4x′φ(x)φ(x′)D(x, x′) + i

∫
d4xJ(x)φ(x)

)∫
Dφ exp

(
i
2

∫
d4xd4x′φ(x)φ(x′)D(x, x′)

) (2.67)

where we dropped the factor e−ε|τ | in the first line and it is understood that in the end the limit ε→ 0

is taken. D(x, y) in the second line is defined as

D(x, x′) =
∂

∂x′µ

∂

∂xµ
δ(x− x′)−m2δ(x− x′) + iεE(~x, ~x′)δ(t− t′) . (2.68)

All three terms only depend on the difference x − x′ and thus the result is translation invariant. In

momentum space with

φ̃(p) =

∫
d4xe−ipxφ(x) φ(x) =

∫
d4p

(2π)4
eipxφ̃(p) (2.69)

we thus obtain

D̃(p) = p2 −m2 + iεE(p) (2.70)

S + Jφ+ iε terms =
1

2

∫
d4p

(2π)4

(
φ̃(p)D̃(p)φ̃(−p) + J̃(p)φ̃(−p) + J̃(−p)φ̃(p)

)
(2.71)
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Analogously to the derivation in case of the quantum harmonic oscillator the d4x integration yields

a factor (2π)4δ(4)(p + p′) which introduces the different signs for the momenta. Note that D̃(p) is

symmetric, D̃(p) = D̃(−p) and thus using linearity of the path integral measure by shifting the field

φ̃(p)→ φ̃(p)− D̃(p)−1J̃(p) we obtain

Z[J ] =
1

Z[0]
exp

(
− i

2

∫
d4p

(2π)4
J̃(p)D̃(p)−1J̃(−p)

)
×
∫
Dφ exp

(
i

2

∫
d4p

(2π)4
φ̃(p)D̃(p)φ̃(−p)

)
(2.72)

= exp

(
− i

2

∫
d4p

(2π)4
J̃(p)D̃(p)−1J̃(−p)

)
(2.73)

In position space we obtain

Z[J ] = exp

(
− i

2

∫
d4xd4x′J(x)∆F (x− x′)J(x′)

)
(2.74)

where we implicitly defined the Feynman propagator

∆F (x− x′) ≡
∫

d4p

(2π)4

e−ip(x−x
′)

p2 −m2 + iεE(p)
. (2.75)

As we are only interested in the limit ε→ 0+, it is common to replace iεE(p) by iε which we will do

in the following for simplicity. The Feynman propagator is a Green’s function of the Klein-Gordon

equation and thus satisfies (in the limit ε→ 0)(
�x +m2

)
∆F (x− x′) = −δ(4)(x− x′) (2.76)

which follows directly from its definition. In the complex plane of the energy there are two simple

poles at ±
(√

~p2 +m2 − iε
)

. Using the residue theorem we can evaluate the integral over the energy

and obtain

∆F (x− x′) = −i
∫

d3p

(2π)32E(p)
e−iωp|t−t

′|+i~p(̇~x−~x′) (2.77)

= −i θ(t− t′)
∫

d3p

(2π)32ωp
e−ip(x−x

′) − iθ(t′ − t)
∫

d3p

(2π)32ωp
e−ip(x

′−x) (2.78)

using the result from the same calculation for the harmonic oscillator. The two remaining integrals can

be evaluated in terms of modified Bessel functions which we will see when looking at the spin-statistics

connection theorem. Finally analogously to the discussion for the harmonic oscillator we obtain the

expectation values of the time-ordered products by taking functional derivatives with respect to the

sources

〈0|Tφ(x1) . . . φ(xn)|0〉 =
1

i

δ

δJ(x1)
. . .

1

i

δ

δJ(xn)
Z[J ]

∣∣∣∣
J=0

(2.79)

In particular the 2-point correlation function is given in terms of the Feynman propagator

〈0|Tφ(x1)φ(x2)|0〉 = i∆F (x2 − x1) . (2.80)
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or explicitly writing out the time-ordered product we find

i∆F (x2 − x1) = θ(t1 − t2) 〈0|φ(x1)φ(x2)|0〉+ θ(t2 − t1) 〈0|φ(x2)φ(x1)|0〉 (2.81)

= θ(t1 − t2)
〈
0|φ+(x1)φ−(x2)|0

〉
+ θ(t2 − t1)

〈
0|φ+(x2)φ−(x1)|0

〉
. (2.82)

with the positive and negative frequency solutions

φ+(x, t) =

∫
d3k

(2π)32ωk
a(k)e−ikx (2.83)

φ−(x, t) =

∫
d3k

(2π)32ωk
a†(k)eikx . (2.84)

Thus the Feynman propagator for t2 < t1 can be interpreted as the creation of a particle at x2 and

the annihilation of a particle at x1 and vice versa for t1 < t2. The time-ordered product of 2n field

operators is given by the sum over all pairings

〈0|Tφ(x1) . . . φ(x2n)|0〉 = in
∑

pairings

∆F (xi1 − xi2) . . .∆F (xi2n−1 − xi2n) . (2.85)

This result is known as Wick’s theorem.

2.6 Interacting scalar field theory

Finally we will be considering interactions. Consider a Lagrangian L = L0 + L1 where L0 is the

Lagrangian of a free field (or exactly solvable) and L1 denotes the interaction Lagrangian.11 Then the

generating functional can be written as

Z[J ] =

∫
Dφei

∫
d4x(L0+L1+Jφ+i ε

2
φ2)∫

Dφei
∫
d4x(L0+L1+i ε

2
φ2)

(2.86)

We are going to use our solution for the free field theory to obtain a more convenient expression for

the interacting theory12

Z[J ] ∝
∫
Dφei

∫
d4xL1ei

∫
d4x(L0+Jφ+i ε

2
φ2) = exp

[
i

∫
d4xL1

(
1

i

δ

δJ(x)

)]
Z0[J ] (2.87)

with the generating functional of the free theory

Z0[J ] = exp

(
− i

2

∫
d4xd4x′J(x)∆F (x− x′)J(x′)

)
(2.88)

Thus vacuum expectation values of time-ordered products of operators are given by

〈0|Tφ(x1) . . . φ(xn)|0〉 =
1

Z[0]

1

i

δ

δJ(x1)
. . .

1

i

δ

δJ(xn)
exp

[
i

∫
d4xL1

(
1

i

δ

δJ(x)

)]
Z0[J ]

∣∣∣∣
J=0

. (2.89)

11Recall that we made several assumptions when going to the Lagrangian formulation: H is no more than quadratic

in the conjugate momenta and this term does not depend on the generalized coordinates. If this is not satisfied or if we

want to calculate expectation values of conjugate momenta, we have to resort to the Hamiltonian formulation.
12The derivation is intuitive. A more rigorous derivation can be found in Ryder chapter 6.4.
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Figure 1: E = 0 and V = 0

Figure 2: E = 0 and V = 2

In order to better understand the expression we will do a double expansion of the generating functional

in terms of the number of interactions and the number of propagators ∆F . For concreteness we will

consider the simplest interaction Lagrangian

L1 =
1

3!
gφ3 . (2.90)

This theory is not bounded from below and thus there is no ground state (similar to the harmonic

oscillator with a q3 correction). This however does not become obvious in perturbation theory, when

we expand in the small coupling g. We will ignore it in the following and illustrate the perturbative

expansion of the generating functional. The expansion of Eq. (2.87) then results in

Z[J ] ∝
∞∑
V=0

1

V !

[
ig

6

∫
d4x

(
1

i

δ

δJ(x)

)3
]V ∞∑

P=0

1

P !

[
− i

2

∫
d4xd4x′J(x)∆F (x− x′)J(x′)

]P
. (2.91)

For a given term in the expansion with P propagators and V vertices the number of surviving sources

is E = 2P − 3V , where E stands for external legs. In case of the expectation value of a time-ordered

product E has to match the number of operators in the time-ordered product. The overall phase

factor of each term is iV 1
i3V

1
iP

= i−P−2V . There are several identical terms for a given set of (V, P,E),

because the functional derivatives can act on the propagators in different combinations. We can

represent each term in the expansion diagrammatically. The diagrams are called Feynman diagrams

which have been first introduced by R. Feynman. We represent each propagator by a line and each

interaction by a vertex where three lines meet. For example there is one connected13 diagram with

E = 0 and V = 0 as shown in Fig. 1 and there are 2 connected diagrams with E = 0 and V = 2 as

shown in Fig. 2. The multiplicity of each diagram can be obtained by the following considerations:

(i) we can rearrange the three functional derivatives of each vertex without changing the diagram.

This results in a factor 3! for each vertex. (ii) We can similarly rearrange the vertices which results

in a factor V !. (iii) For each propagator we can rearrange the ends which results in a factor 2! for

each propagator. (iv) Finally we can rearrange the propagators themselves and thus obtain another

P ! diagrams. These factors exactly cancel the factors in the double expansion. Thus we represent

each vertex by a factor ig
∫
d4x, a propagator by i∆F (x− x′) and an external source by i

∫
d4xJ(x).

13A connected diagram is a diagram, where I can trace a path along the diagram between any two vertices.
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This outlined counting of the diagrams generally leads to an overcounting for diagrams which

possess a symmetry which corresponds to cases when a rearrangement of the functional derivatives

can be exactly reverted by a change of the sources. For example for the first diagram in Fig. 2 we

can swap the propagators which are connected to the same vertex and compensate it by swapping

2 derivatives yielding a factor 22. Furthermore the propagator connecting the two vertices can be

swapped and compensated for by swapping the two vertices. For the second diagram we can arrange

the propagators in 3! ways and compensate this by exchanging the derivatives at each vertex. In

addition, it is possible to simultaneously swap all propagators and compensate it by exchanging the

vertices which yields another factor of 2. Thus the term corresponding to each diagram has to be

divided by the symmetry factor S of the diagram.

The shown diagrams are all connected. In general there are also disconnected diagrams. A general

diagram can be thought of as the product of the different connected subdiagrams and thus a general

diagram

D =
1

SD
ΠIC

nI
I (2.92)

where CI denotes a connected diagram including its symmetry factor, nI is the multiplicity for each

connected diagram and SD the symmetry factor from exchanging the different connected diagrams.

As we already considered the symmetry factors of each individual connected diagram, the symmetry

factor SD can only account for rearrangements between diagrams. However we only end up with

the same diagram, if we exchange all propagators and vertices of one diagram with an identical one

and hence SD = ΠInI !. The generating functional up to normalization is given by the sum over all

diagrams

Z[J ] ∝
∑

D =
∑
{nI}

ΠI
1

nI !
CnII = ΠI

∞∑
nI=0

1

nI !
CnII = ΠIe

CI = e
∑
I CI . (2.93)

We find that the generating functional is given by the exponential of the sum of all connected diagrams.

If we omit diagrams without any external sources in the sum, the so-called vacuum diagrams, we

automatically obtain the correct normalization Z[0] = 1 and thus define the generating functional W

for fully connected diagrams

iW [J ] = lnZ[J ] =
∑
I 6={0}

CI (2.94)

where the notation I 6= {0} implies that vacuum diagrams are omitted.

We now calculate the vacuum expectation value of φ.

〈0|φ(x)|0〉 =
1

i

δ

δJ(x)
Z[J ]

∣∣∣∣
J=0

=
δ

δJ(x)
W [J ]

∣∣∣∣
J=0

. (2.95)

The leading order contribution at order O(g) can be obtained from the diagram on the right-hand

side of Fig. 3, where the filled circle denotes a source. The source is removed by the derivative and
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thus we obtain

〈0|φ(x)|0〉 =
1

i

δ

δJ(x)

1

2

[
ig

∫
d4y

] [
i

∫
d4y′J(y′)

]
i∆F (y−y′)i∆F (y−y) = −ig

2
∆F (0)

∫
d4y∆F (y−x)

(2.96)

with symmetry factor 1
2 . This is in contradiction with the requirement for the LSZ reduction formula

which requires that 〈0|φ(x)|0〉 = 0. Thus we have to modify our theory by introducing an additional

term in the interaction Lagrangian, a so-called tadpole term, Y φ

L1 =
g

6
φ3 + Y φ . (2.97)

It will lead to a new vertex which contributes a factor iY
∫
d4y. In this modified theory there is a

second contribution from the diagram on the left-hand side in Fig. 3 and thus

〈0|φ(x)|0〉 =
(
Y − ig

2
∆F (0)

)∫
d4y∆F (y − x) . (2.98)

By choosing Y we can ensure that the vacuum expectation value of the field vanishes as required by

the LSZ reduction formula. This procedure is called renormalization. Let us evaluate ∆F (0) to obtain

the required value of Y

∆F (0) =

∫
d4k

(2π)4

1

k2 −m2 + iε
. (2.99)

This integral diverges quadratically! Thus we have to regularize the integral first before evaluating it.

We are using cutoff regularization, where we impose a cutoff on the momentum in Euclidean space

|kE | < Λ. We first perform a so-called Wick rotation, k0 → ik4
E , ki → kiE to go from Minkowski space

to Euclidean space, then use spherical coordinates to evaluate the integral.

i

∫
|kE |<Λ

d4k

(2π)4

1

k2 −m2 + iε
=

∫
|kE |<Λ

d4kE
(2π)4

1

k2
E +m2

(2.100)

=

∫
dΩ4

∫ Λ2

0

k2
Edk

2
E

2(2π)4

1

k2
E +m2

(2.101)

=
2π2

2(2π)4

∫ Λ2+m2

m2

dx

(
1− m2

x

)
(2.102)

=
1

16π2

[
x−m2 lnx

]Λ2+m2

m2 (2.103)

=
1

16π2

[
Λ2 +m2 ln

(
1 +

Λ2

m2

)]
(2.104)

where we used that the area of a d-dimensional unit sphere is given by∫
dΩd =

2πd/2

Γ(d/2)
(2.105)

and the substitution x = k2
E + m2. Thus the leading divergence is quadratic and the second term

diverges logarithmically. The tadpole coupling Y = g
2 i∆F (0) is real as it is required for a hermitian

Lagrangian.
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x

Figure 3: Leading contribution to tadpole. Filled circle correspond to external source. x denotes

vertex Y .

Divergences in the evaluation of loop integrals are a common feature in quantum field theory. They

are dealt with by first regularizing the integrals and then renormalizing couplings in the Lagrangian

to absorb the divergences. Time-permitting we will discuss it in more detail at the end of the lecture

course.

Summarising, the generating functional Z[J ] can be expressed in terms of the generating functional

W [J ], which is given by the sum of all connected diagrams with no tadpoles and at least two sources

J . The Lagrangian has to include all relevant couplings such that all divergences can be absorbed.

2.7 Scattering matrix

We are now in the position to calculate the probability for a transition from an initial state |i〉 to a

final state |f〉. We consider the example of 2→ 2 scattering 1 + 2→ 3 + 4 and thus need the vacuum

expectation value of the time-ordered product of four field operators

〈0|Tφ(x1)φ(x2)φ(x3)φ(x4)|0〉 = δ1δ2δ3δ4Z[J ]|J=0 (2.106)

=
[
δ1δ2δ3δ4iW [J ] (2.107)

+ δ1δ2iW [J ]δ3δ4iW [J ] + δ1δ3iW [J ]δ2δ4iW [J ] + δ1δ4iW [J ]δ2δ3iW [J ]
]
J=0

= 〈0|Tφ(x1)φ(x2)φ(x3)φ(x4)|0〉C −∆F (x1 − x2)∆F (x3 − x4) (2.108)

−∆F (x1 − x3)∆F (x2 − x4)−∆F (x1 − x4)∆F (x2 − x3)

where we used Z[J ] = exp(iW [J ]), δiW [0] = 0 and defined a short-hand for the functional derivative

with respect to the source

δi ≡
1

i

δ

δJ(xi)
. (2.109)

The first term corresponds to a fully connected diagram, where all four particles are connected to each

other, while the others are products of 2-point functions and thus represent disconnected diagrams

where always 2 particles are connected with a propagator. The LSZ reduction formula then determines

the transition matrix element. Let us first consider how the disconnected diagrams contribute to the

scattering amplitude. For example the contribution from −∆F (x1−x3)∆F (x2−x4) can be separated

i4
∫
eik1x1+ik2x2−ik3x3−ik4x4Πid

4xi(∂
2
i +m2)i∆F (x1 − x3)i∆F (x2 − x4) = F13F24 (2.110)
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Figure 4: Tree-level diagrams contributing to 2→ 2 scattering

with

F13 = i

∫
d4x1d

4x3
d4p

(2π)4
(p2 −m2)eik1x1−ik3x3−ip(x1−x3) (2.111)

= i

∫
d4p

(2π)4
(p2 −m2)(2π)4δ(k1 − p)(2π)4δ(k3 − p) (2.112)

= i(2π)4δ(k3 − k1)(k2
1 −m2) (2.113)

F24 = i(2π)4δ(k4 − k2)(k2
2 −m2) . (2.114)

Thus the 4-momenta of the outgoing particles are equal to the ones of the incoming particles and it

only contributes to forward scattering when the final state is the same as the initial state and thus

does not contribute to the T matrix. The other two disconnected contributions are proportional to

δ functions like δ(k1 + k2) with k0
1 + k0

2 ≥ 2m > 0 and thus do not contribute. Generally only fully

connected diagrams which are generated by taking derivatives of W are of interest.

Here the leading order is generated by the tree-level diagrams in Fig. 4. They translate to (We

drop the subscript F from the Feynman propagator in the following.)

δ1δ2δ3δ4iW = (ig)2i5
∫
d4xd4y∆(x− y)

[
∆(x1 − x)∆(x2 − x)∆(y − x3)∆(y − x4) (2.115)

+ ∆(x1 − x)∆(x3 − x)∆(y − x2)∆(y − x4)

+ ∆(x1 − x)∆(x4 − x)∆(y − x2)∆(y − x3)
]

and thus it contributes to the S matrix as follows

−ig2

∫
d4xd4yeik1x1+ik2x2−ik3x3−ik4x4Πid

4xi∆(x− y)
[
δ(x1 − x)δ(x2 − x)δ(y − x3)δ(y − x4) (2.116)

+ δ(x1 − x)δ(x3 − x)δ(y − x2)δ(y − x4)

+ δ(x1 − x)δ(x4 − x)δ(y − x2)δ(y − x3)
]
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= −ig2

∫
d4xd4y∆(x− y)

[
ei(k1+k2)x−i(k3+k4)y + ei(k1−k3)x+i(k2−k4)y + ei(k1−k4)x+i(k2−k3)y

]
(2.117)

= −ig2

∫
d4xd4y

d4p

(2π)4

e−ip(x−y)

p2 −m2 + iε

[
ei(k1+k2)x−i(k3+k4)y + ei(k1−k3)x+i(k2−k4)y + ei(k1−k4)x+i(k2−k3)y

]
(2.118)

= −ig2

∫
d4xd4y

d4p

(2π)4

ei(k1+k2−p)x−i(k3+k4−p)y + ei(k1−k3−p)x+i(k2−k4+p)y + ei(k1−k4−p)x+i(k2−k3+p)y

p2 −m2 + iε

(2.119)

= −i(2π)4g2

∫
d4p

δ(k1 + k2 − p)δ(k3 + k4 − p) + δ(k1 − k3 − p)δ(k2 − k4 + p) + δ(k1 − k4 − p)δ(k2 − k3 + p)

p2 −m2 + iε

(2.120)

= −ig2(2π)4δ(k1 + k2 − k3 − k4)

[
1

s−m2 + iε
+

1

t−m2 + iε
+

1

u−m2 + iε

]
(2.121)

where we introduced the so-called Mandelstam variables

s = (k1 + k2)2 t = (k1 − k3)2 u = (k1 − k4)2 (2.122)

In the centre-of-mass frame s is simply given by the square of the total energy of the system s =

(E1 + E2)2. The Mandelstam variables satisfy

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4 . (2.123)

For general scattering processes it is convenient to define the matrix element M via

〈f |i〉 = iTfi = i(2π)4δ(kin − kout)M (2.124)

where kin (kout) is the sum of incoming (outgoing) momenta. Looking at our calculation we can derive

a simple set of Feynman rules to calculate the matrix element:

1. Each external line corresponds to a factor 1.

2. For each internal line with momentum p write i
p2−m2+iε

.

3. For each vertex write ig.

4. At each vertex the four-momentum is conserved.

5. Integrate over internal free momenta ki with measure d4ki/(2π)4.

6. Divide by symmetry factor of the diagram.

7. Sum over the expressions of the different diagrams.

Note momenta of incoming (outgoing) particles are going in (out).
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The probability for a transition from state |i〉 to state |f〉 is then given by

P =
| 〈f |i〉 |2

〈f |f〉 〈i|i〉
(2.125)

We will first consider a finite volume V and time interval T in order to avoid infinities and then take

the continuum limit. Thus

(2π)3δ3(0) =

∫
d3xei0x = V (2π)4δ4(0) =

∫
d4xei0x = V T (2.126)

For definiteness we will consider the scattering of 2 particles to an arbitrary final state with n particles.

The norm of a one-particle state is given by

〈k|k〉 = 2k0(2π)3δ3(0) = 2k0V (2.127)

and as the two-particle state in the infinite past and future can be effectively described by the product

of two one-particle states, we obtain

〈i|i〉 = 4E1E2V
2 〈f |f〉 = Πi(2k

0
i V ) . (2.128)

Similarly for the squared transition amplitude we obtain

| 〈f |i〉 |2 = |(2π)4δ(kin − kout)|2|M |2 = (2π)4δ(kin − kout)V T |M |2 . (2.129)

Finally we have to sum over all possible final states. In the box with length L the 3-momenta are

quantized ~ki = 2π
L ~ni and thus summing over the different modes corresponds to an integration∑

ni

→ L3

(2π)3

∫
d3ki . (2.130)

The volume V = L3 cancels against the volume factor from the normalization. Thus the transition

rate is

Ṗ =
(2π)4δ(kin − kout)

4E1E2V

∫
Πn
i=1

d3ki
(2π)32ωi

|M |2 . (2.131)

The Lorentz-invariant differential cross section can be obtained by dividing by the incoming particle

flux. In the rest frame of the second particle, it is simply given by the velocity of the first particle per

volume. In the centre-of-mass frame (where the 3-momenta of the incoming particles add to zero), it

is the relative velocity per volume σ = Ṗ V/vrel where the relative velocity can be expressed by

vrel = |~v1 − ~v2| =
∣∣∣∣ ~p1

E1
− ~p2

E2

∣∣∣∣ =
|~p1|
E1E2

(E1 + E2) =
|~p1|
E1E2

√
s (2.132)

or in terms of the flux factor14

F = E1E2vrel =
√
s
√
E2

1 −m2
1 =

1

2

√
(s+m2

1 −m2
2)2 − 4sm2

1 =
√

(p1 · p2)2 −m2
1m

2
2 (2.134)

14The energy of one particle in the centre-of-mass frame is

E1 =
s+m2

1 −m2
2

2
√
s

(2.133)

which can be derived by using the definition of s and ~p1 + ~p2 = 0.

30



where we used s = m2
1 +m2

2 + 2p1 · p2. and thus the differential cross section is determined by

4Fdσ = |M |2dLIPSn(k1 + k2) (2.135)

where the Lorentz-invariant n-body phase space is defined by

dLIPSn(k) = (2π)4δ

(
k −

n∑
i=1

ki

)
Πn
i=1

d3ki
(2π)32ωi

. (2.136)

The 2-body phase space is particularly simple to evaluate in the centre-of-mass frame∫
dLIPS2(k) =

∫
(2π)4δ(k − k1 − k2)

d3k1

(2π)32ω1

d3k2

(2π)32ω2
(2.137)

=

∫
(2π)δ(

√
s− E1 − E2)

d3k1

(2π)32E12E2(k1)
(2.138)

=

∫
δ(
√
s− E1 − E2)

|~k1|dE1dΩ

16π2E2(E1)
=

∫
dΩ

16π2

|~k1|√
s

(2.139)

=

∫ 1

−1

d cos θ

8π

|~k1|√
s

(2.140)

where the last line holds if the integrand does not depend on the azimuthal angle φ.

In case that there are n identical particles in the final state, we have to divide by the symmetry fac-

tor S = n! in the cross section in order to avoid double-counting the different final state configurations.

Thus the total cross section is given by

σ =
1

S

∫
dσ . (2.141)

If there is one particle in the initial state and we are studying decays we have to slightly modify

our assumptions, because we assumed all particles to be stable in the previous discussion. However it

turns out that the LSZ reduction formula also holds in this case. We only have to modify the initial

state normalization 〈i|i〉 = 2E1V and find for the differential decay rate

dΓ =
|M |2

2E1
dLIPSn(k1) (2.142)

and the total decay rate is obtained by summing over all outgoing momenta and dividing by the

symmetry factor

Γ =
1

S

∫
dΓ . (2.143)

Note that the decay rate is not a Lorenz scalar. In the centre-of-mass frame of the particle, there is

E1 = m1, while the decay rate is smaller in any other frame by a factor γ = E1/m1, the relativistic

boost factor, which accounts for the relativistic time dilation. Faster particles have a longer lifetime,

e.g. muons generated in the atmosphere reach the Earth’s surface due to this time dilation factor.
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3 Spin 1 – gauge theories

Consider complex scalar field φ. The Lagrangian

L = ∂µφ
†∂µφ− V (φ†φ) (3.1)

with potential V is invariant under global phase transformations φ → eiαφ: φ†φ → φ†φ and also

|∂µφ|2 → |∂µφ|2. The potential is also invariant under local phase transformations, a so-called gauge

transformation, i.e. transformations which depend on the position

φ(x)→ eiα(x)φ(x) , (3.2)

but the kinetic term is not invariant under gauge transformations, because

∂µφ(x)→ ∂µe
iα(x)φ(x) = eiα(x) [∂µφ(x) + i(∂µα(x))φ(x)] . (3.3)

In order to obtain a field theory which is invariant under gauge transformations, we introduce the

covariant derivative

Dµ = ∂µ + igAµ (3.4)

with a gauge field (or vector field) Aµ, i.e. the field transforms as a vector under the Lorentz group.

The Lagrangian

L = (Dµφ)†Dµφ− V (φ†φ) (3.5)

is invariant under gauge transformations if the covariant derivative transforms as

Dµφ(x)→ eiα(x)Dµφ(x) (3.6)

or the gauge field Aµ transforms as follows with respect to a gauge transformation

gAµ(x)→ gAµ(x)− ∂µα(x) . (3.7)

From the gauge field Aµ we can form the field strength tensor

Fµν =
1

ig
[Dµ, Dν ] = ∂µAν − ∂νAµ , (3.8)

and its dual field strength tensor F̃µν = 1
2ε
µνρσFρσ. The field strength tensor is invariant under gauge

transformations, i.e. Fµν → Fµν . The components of the field strength tensor Fµν can be identified

with electric ~E and magnetic ~B fields

(Fµν) =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 (3.9)
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and thus we can write Maxwell’s equations as

∂µF
µν = Jν ∂µF̃

µν = 0 (3.10)

with external source (Jν) = (ρ,~j) [scalar potential ρ and current ~j]. The first set of equations can be

derived from the Lagrangian of quantum electrodynamics (QED) together with a source term

L = −1

4
FµνF

µν + JµA
µ . (3.11)

and the second set of Maxwell equations is a direct consequence of the Bianchi identity.

In addition to the kinetic term there is another term which can be formed out of the field strength

tensor and its dual

L = c
i

16π2
FµνF̃

µν = c
i

8π2
∂µ

(
AνF̃

µν
)
. (3.12)

As it can be written as a total derivative using the Bianchi identity, it is a topological term.

The Lagrangian is invariant under an infinite number of symmetries defined by the functions α(x).

However there is not an infinite number of conserved charges! We should interpret a gauge symmetry

as a redundancy in our description of the fields. In electrodynamics there are only two physical degrees

of freedom, the two polarisation states of the photon. This has to be compared to the 4 components

of the gauge field Aµ(x). This requires us to fix the gauge, i.e. to impose conditions on the gauge

field. Common choices are:

• Lorentz gauge: ∂µA
µ = 0, which is Lorentz invariant as the name suggests. It however does not

fix the gauge completely, because there are non-trivial solutions to ∂µ∂
µα = 0.

• Coulomb gauge: ∇ · ~A = 0, is not Lorentz invariant, but fixes the gauge completely. In the

absence of charged matter, the zeroth component of the gauge field vanishes and thus the only

remaining degrees of freedom are the two transverse components of ~A. Thus it is straightforward

to quantize a gauge field in Coulomb gauge using canonical quantization for the two physical

degrees of freedom.

3.1 Gupta-Bleuler quantization

We would like to obtain a Lorentz covariant quantum theory of free electrodynamics

LQED = −1

4
FµνF

µν = −1

2
∂µAν (∂µAν − ∂νAµ) (3.13)

=
1

2
Aν (∂µ∂

µAν − ∂µ∂νAµ) + total derivative (3.14)

=
1

2
Aµ [�gµν − ∂µ∂ν ]Aν + total derivative . (3.15)

As we require Lorentz invariance we have to consider all four components of the gauge field Aµ and

its conjugate momentum πν . They should satisfy the canonical equal-time commutation relations

[Aµ(x, t), πν(y, t)] = −igµνδ(3)(x− y) [Aµ(x, t), Aν(y, t)] = [πµ(x, t), πν(y, t)] = 0 . (3.16)
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However there is a problem, since the conjugate momenta

πµ =
∂L
∂Ȧµ

= Fµ0 (3.17)

do not have a time-component, π0 = 0. Thus it is impossible to define an operator which satisfies the

equal-time commutation relations. We thus have to modify the Lagrangian. One way forward due to

Fermi is to start from the Lagrangian (with ξ = 115)

L = −1

4
FµνFµν −

1

2ξ
(∂µA

µ)2 . (3.18)

It is equivalent to the original Lagrangian after imposing the Lorentz gauge condition and leads to

the following equations of motion [
�gµν −

(
1− 1

ξ

)
∂µ∂ν

]
Aν = 0 (3.19)

and in particular for ξ = 1 the equations of motion is simply the massless Klein-Gordon operator

applied to the gauge field

�Aν = 0 (3.20)

and thus the propagator is ∆̃µν(p) = −gµν/(p2 + iε). The conjugate momentum now becomes

πµ = Fµ0 − gµ0∂νA
ν (3.21)

and the equations of motion (3.20) are solved by a plane wave expansion

Aµ(x) =

∫
d3k

(2π)32k0

3∑
λ=0

[
ε(λ)
µ (k) aλ e

−ikx + ε(λ)∗
µ (k) a†λ e

ikx
]

(3.22)

with the four polarisation vectors ε
(λ)
µ with a Lorentz invariant normalization

ε(λ)∗
µ ε(λ

′)
ν gµν = gλλ

′
, (3.23)

i.e. ε(0) is time-like, while the others are space-like. For a photon moving along the third axis, i.e. with

momentum kµ = (k, 0, 0, k), the polarisation vectors can be chosen as ε
(λ)
µ = δλµ, and thus ~k · ε(1,2) = 0.

Thus the polarisations ε(0) is ’time-like’ or ’scalar’, ε(3) longitudinal and thus clearly unphysical, while

the polarisations ε(1,2) are transverse. Let us go ahead and try to quantize the theory. We calculate

the commutation relation

[aλ, a
†
λ′ ] = −gλλ′2k0(2π)3δ(3)(~k − ~k′) . (3.24)

This however poses a problem. The time-like polarisation has an opposite sign. This implies that

1-particle time-like states

|1〉 =

∫
d3k

(2π)32k0
a†0 |0〉 (3.25)

15We keep ξ general because we will recover it from the Faddeev-Popov trick which is discussed in the next section.
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have a negative norm 〈1|1〉 < 1, also the Hamiltonian

H =

∫
d3k

(2π)32k0
k0
[
−gλλ′a†λaλ′

]
(3.26)

has a negative expectation value for a 1-particle time-like state, 〈1|H|1〉 < 0. This indicates a problem

with time-like states. They are clearly unphysical and have to be removed, also we did not impose the

Lorentz gauge condition yet. The Lorentz gauge condition can not be applied at the operator level,

because otherwise the commutation relations can not be satisfied. Gupta and Bleuler suggested to

impose the following weaker condition

∂µA
+µ |ψ〉 = 0 (3.27)

on any physical state |ψ〉 where A+ is the positive frequency part of the gauge field expansion, i.e. it

contains the annihilation operator. This implies that the expectation value of ∂µA
µ vanishes for all

physical states

〈ψ|∂µAµ|ψ〉 =
〈
ψ|∂µA+µ + ∂µA

−µ|ψ
〉

= 0 . (3.28)

If we substitute the field expansion (3.22) into Eq. (3.27) we find that physical states contain an

admixture of time-like and longitudinal degrees freedom

3∑
λ=0

kµε(λ)
µ aλ(k) |ψ〉 = 0

kµ=(k,0,0,k)
=⇒ [a3(k)− a0(k)] |ψ〉 = 0 (3.29)

such that their contribution exactly cancels, e.g. in the Hamiltonian.

3.2 LSZ reduction formula for quantum electrodynamics

From the expansion of the gauge field in Eq. (3.22) together with the normalization of the polarisation

vectors we obtain expressions for the annihilation/creation operators (no summation over λ)

ε(λ)∗
µ (k)

∫
d3xeikx

[
k0 + i∂0

]
Aµ(x) = gλλaλ(k) (3.30)

ε(λ)
µ (k)

∫
d3xe−ikx

[
k0 − i∂0

]
Aµ(x) = gλλa†λ(k) (3.31)

From here we can follow the derivation in Sec. 1.6 to deduce the LSZ reduction formula for quantum

electrodynamics. Creation (annihilation) operators for incoming (outgoing) photons will be replaced

by (no sum over λ)

a†λ(k)in → −igλλε(λ)
µ

∫
d4xe−ikx∂2Aµ(x) aλ(k)out → −igλλε(λ)∗

µ

∫
d4xeikx∂2Aµ(x) . (3.32)

Thus the transition amplitude is given by replacing the creation and annihilation operators as outlined

above and taking the vacuum expectation value of the time-ordered product of the field operators.

Similar to the case of the real scalar field, the LSZ formula is valid if the field is normalized like a free

field

〈0|Aµ(x)|0〉 = 0 〈0|Aµ(x)|k, λ〉 = ε(λ)
µ (k)e−ikx (3.33)

where |k, λ〉 is a single photon state which is normalized to 〈k′, λ′|k, λ〉 = −gλλ′(2π)32k0δ(3)(k − k′).
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3.3 Path integral quantization of quantum electrodynamics

We now move on to look at the path integral for quantum electrodynamics. The gauge freedom poses

a problem for the path integral: The integration over the redundant degrees of freedom in the path

integral leads to a divergent result, which can be seen by considering a gauge field configuration which

is pure gauge. In this case the kinetic term vanishes and thus the integration over this direction in

field space diverges.

Moreover, even ignoring this infinity there is no Feynman propagator: The differential operator

�gµν−∂µ∂ν is not invertible. It annihilates any pure gauge term ∂µα and thus it is impossible to derive

a Green’s function/Feynman propagator. The path integral diverges, because we are integrating over

a continuous infinity of physically equivalent field configurations. Thus we would like to restrict the

path integral to the physical configuration space, i.e. pick one (inequivalent) configuration from each

gauge orbit. We follow the approach by Faddeev and Popov on how to isolate the gauge degrees of

freedom. We choose a gauge fixing condition 0 = G(A). For example we obtain the Lorentz gauge

for G(A) = ∂µA
µ. Let Aαµ denote the gauge-transformed gauge field, Aαµ = Aµ + 1

g∂µα. Then the

continuum generalisation of the identity

1 =

∫
Πi dai det

(
∂gi
∂aj

)
δ(n)(g(a)) → 1 =

∫
Dα(x) det

(
δG(Aα)

δα

)
δ(G(Aα)) (3.34)

can be used to insert the identity into the path integral. The determinant is generally independent of

A, e.g. in Lorentz gauge we find det (δG(Aα)/δα) = det(∂2/g). We insert the identity into the path

integral and thus obtain∫
DAeiS = det

(
δG(Aα)

δα

)∫
Dα

∫
DAeiSδ(G(Aα)) (3.35)

= det

(
δG(Aα)

δα

)∫
Dα

∫
DAαeiSδ(G(Aα)) (3.36)

= det

(
δG(Aα)

δα

)∫
Dα

∫
DAeiSδ(G(A)) (3.37)

where we shift the integration variable A → Aα in the second line and then rename it in the third

to A. In this way we isolated the integral over the gauge parameter. The remaining path integral

satisfies the gauge fixing condition G(A) = 0. We choose the gauge condition

G(A) = ∂µA
µ(x)− ω(x) (3.38)

with a general scalar function ω(x). The usual Lorentz condition is obtained by setting ω to zero∫
DAeiS = det

(
1

g
∂2

)∫
Dα

∫
DAeiSδ(∂µAµ − ω) . (3.39)

As this holds for any ω, we can integrate over it weighing it with a Gaussian: exp
[
−i
∫
d4xω2(x)/2ξ

]
∫
DAeiS = N(ξ)

∫
Dω exp

[
−i
∫
d4x

ω2

2ξ

]
det

(
1

g
∂2

)∫
Dα

∫
DAeiSδ(∂µAµ − ω) (3.40)

= N(ξ) det

(
1

g
∂2

)∫
Dα

∫
DAeiS exp

[
−i
∫
d4x

(∂µA
µ)2

2ξ

]
(3.41)
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whereN(ξ) is an normalization constant. Note that the gauge condition is not satisfied exactly. Gauge-

equivalent contributions are however exponentially suppressed. In the last line we evaluated the path

integral over ω. In the final result there is a new term in the Lagrangian, the so-called Faddeev-

Popov term which is quadratic in the gauge fixing condition. We can repeat the same derivation

for expectation values of gauge-invariant operators. The restriction to gauge-invariant operators is

important for the step when we shifted the integration variables from A → Aα, i.e. performed a

gauge transformation. The pre-factors N(ξ) det(∂2/g)
∫
Dα drop out after properly normalising the

partition function

Z[J ] =

∫
DAei

∫
d4x
(
L− 1

2ξ
(∂µAµ)2+iε terms

)
. (3.42)

Popular (convenient) choices of the gauge parameter ξ are ξ = 1, the so-called ”Feynman gauge”, and

ξ = 0, unitary gauge, while the use of a general ξ is typically called Rξ gauge. All final gauge-invariant

(physical) results are independent of the parameter ξ.

Similarly to the path integral of the scalar field we introduced some terms +iε which originate

from the ground state wave function. Thus the quadratic term of the integrand in the exponent can

be written as

L − 1

2ξ
(∂µA

µ)2 + iε terms =
1

2
Aµ

[
�gµν −

(
1− 1

ξ

)
∂µ∂ν

]
Aν + iε terms + total derivative (3.43)

Analogously to the real scalar field, we introduce external source terms Jµ and derive an expression

for the partition function

Z[Jµ] = exp

(
− i

2

∫
d4xd4x′Jµ(x)∆µν(x− x′)Jν(x′)

)
(3.44)

with the Feynman propagator of the photon field

∆µν(x− x′) =

∫
d4p

(2π)4
e−ip(x−x

′)∆̃µν(p) ∆̃µν(p) =
−Pµν(p)

p2 + iε
(3.45)

and the projection operator

Pµν(p) = gµν −
(

1− 1

ξ

)
pµpν
p2

. (3.46)

In scattering processes we consider that the interactions vanish in the infinite past and future. In

the absence of gauge interactions, single particle states of charged scalars and transversely polarized

photons are gauge-invariant, while time-like and longitudinal photon polarizations transform under

gauge transformations. We can thus define the scattering matrix by not considering any time-like or

longitudinal photon polarizations in the initial or final state, i.e. project onto the physical subspace:

S = P0SFPP0 (3.47)

where P0 is the projection onto the physical subspace, SFP the S matrix defined by the Faddeev-Popov

procedure and S the physical S matrix. It remains to show that the S matrix is unitary, i.e. that

there is no scattering from a physical state to either a time-like or longitudinal polarized photon. We

will come back to this later, time-permitting, when discussing the Ward-Takashi identity.
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4 Lorentz group and spin 1
2 fermions

I am assuming some basic knowledge of group theory as it is used in physics. See the appendices if

you need to review some notions.

4.1 Rotations, spin and the SU(2) group

Rotations in 3 dimensional space are described by the group SO(3) which leaves the scalar product∑
i(x

i)2 of 3-vectors xi invariant. There are three independent rotations around the three coordinate

axes which are generated by

J1 = −i

0

0 1

−1 0

 J2 = −i

0 −1

0

1 0

 J3 = −i

 0 1

−1 0

0

 . (4.1)

Thus a general rotation around the x1 axis is given by exponentiation of a multiple of the generator

J1, exp
(
iθ1J

1
)
, and similarly for rotations around the other axes. A general rotation is given by

exponentiating a linear combination of the J i. We equivalently define differential operators through

their action on functions of the three coordinates. The action of J3 for example is

J3F (x1, x2, x3) = i lim
θ3→0

[
F (x′1, x′2, x′3)− F (x1, x2, x3)

θ3

]
(4.2)

= i lim
θ3→0

[
F (x1 + θ3x

2, x2 − θ3x
1, x3)− F (x1, x2, x3)

θ3

]
(4.3)

= i
(
x2∂1 − x1∂2

)
F (x1, x2, x3) = −i[x1, ∂2]F (x1, x2, x3) (4.4)

such that we find

J i = −iεijkxj∂k . (4.5)

with the totally antisymmetric tensor with ε123 = 1. These are exactly the generators of the angular

momentum operators which satisfy

[J i, J j ] = iεijkJk . (4.6)

Moving on to SU(2). It is the group of 2× 2 special unitary matrices

U =

(
a b

−b∗ a∗

)
U †U = 1 detU = 1 (4.7)

which act on a 2-dimensional complex space of (Weyl) spinors χ. If χ→ Uχ, the hermitian conjugate

transforms as χ† → χ†U †. Thus the inner product χ†χ remains invariant. It is also convenient to

define the charge-conjugate spinor

χ̃ ≡

(
−χ∗2
χ∗1

)
=
(
εαβχ

∗β
)

εαβ =


1 α = 1, β = 2

−1 α = 2, β = 1

0 otherwise

(4.8)
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which transforms like χ, while χ̃† transforms like χ†. The outer product χχ̃† transforms as

χχ̃† =

(
−χ1χ2 χ2

1

χ2
2 χ1χ2

)
→ Uχχ̃†U † . (4.9)

We can rewrite the outer product using the Pauli spin matrices as

χχ̃† = xiσi (4.10)

with

x1 =
χ2

1 − χ2
2

2
x2 =

χ2
1 + χ2

2

−2i
x3 = −χ1χ2 (4.11)

The outer product transforms under a SU(2) transformation as follows

σix′i = UσiU †xi . (4.12)

If we take the determinant we find

− det
(
σix′i

)
=
∑
i

(x′i)2 =
∑
i

(xi)2 (4.13)

Thus SU(2) rotations leaves the inner product xi invariant and thus induce SO(3) rotations. In fact

the SU(2) rotations on χ are equivalent to the SO(3) rotations on xi. SU(2) transformations are also

described by three real parameters. The matrices can be parameterised in terms of the underlying Lie

algebra using the Pauli matrices as generators

U = ei
αi
2 σi . (4.14)

which satisfy the commutation relation [
σi

2
,
σj

2

]
= iεijk

σk

2
. (4.15)

In summary we have defined a 3-dimensional vector representation of SO(3) and a spinor representa-

tion of SU(2). We can similarly define other representations of the group SU(2) with generators Si

which satisfy the commutation relation [Si, Sj ] = iεijkSk. There is an infinite number of representa-

tions of SU(2) of dimensions n = 2, 3, 4, . . . .

4.2 Lorentz group

The Lorentz group is formed by the transformations which leave the spacetime interval ds2 = dt2 −
dx2 − dy2 − dz2 invariant. In addition to the three generators for rotations, there are three boosts

K1 = −i


0 1

1 0

0

0

 K2 = −i


0 1

0

1 0

0

 K3 = −i


0 1

0

0

1 0

 (4.16)
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in x1, x2 and x3 direction. A finite Lorentz transformation is obtained by exponentiating the a linear

combination of the generators. For example for boosts in x-direction we obtain

B1 = exp(iφ1K
1) =


coshφ1 sinhφ1 0 0

sinhφ1 coshφ1 0 0

0 0 1 0

0 0 0 1

 (4.17)

and thus K1 = −i d
dφ1

Bx
∣∣
φ1=0

. Note that coshφ1 = γ1 = 1√
1−v21

and sinhφ1 = β1γ1. The generators

satisfy the following commutation relations

[Ki,Kj ] = −iεijkJk [J i, J j ] = iεijkJk [Ki, J j ] = iεijkKk (4.18)

The 6 generators generate all proper orthochronous Lorentz transformations in L↑+ or SO(1, 3)+.

In order to better understand the group structure, it is convenient to consider a complex linear

combination of the generators. We define

N j
± =

1

2

(
J i ± iKi

)
(4.19)

The generators N i
± satisfy the commutation relations

[N i
±, N

j
±] = iεijkNk

± [N i
+, N

j
−] = 0 (4.20)

and thus we can consider the Lorentz group as a direct product SU(2)×SU(2) of two SU(2) (”spin”)

groups. The irreducible representations are classified as (s+, s−), where s± denotes the representation

of the SU(2) group formed by {N i
±}. For example we can define two spinors

χ ∼
(

1

2
, 0

)
with J i =

1

2
σi and Ki = − i

2
σi (4.21)

η ∼
(

0,
1

2

)
with J i =

1

2
σi and Ki =

i

2
σi (4.22)

A general Lorentz transformation can be written as

U = exp
(
iφiKi + iθiJ i

)
(4.23)

Using the generators for the spinor representation in Eqs. (4.21) we see that the transformation is

not unitary, UU † 6= 1 which seems problematic in the context of quantum mechanics. Note however

that rotations and Lorentz boosts only make up part of the Poincaré group which is the fundamental

group for relativistic systems. In particular there are two discrete transformations, parity P and

time-reversal T , which transform between the different disconnected parts of the Lorentz group:

P =


1

−1

−1

−1

 T =


−1

1

1

1

 . (4.24)
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Time-reversal belongs to the improper non-orthochronous Lorentz transformations L↓−, det Λ = −1

and Λ0
0 = −1 and parity (space inversion) belongs to the improper orthochronous Lorentz transfor-

mations L↑−, det Λ = −1 and Λ0
0 = 1. Parity transformation forms a discrete Z2 group and thus we

can classify states according to the eigenvalues of the parity operator ±1, e.g. scalars have parity +1

and pseudo-scalars, have parity −1. Parity changes the sign of boosts, i.e. Ki → −Ki, because the

parameters of the boosts (velocities) change signs. Thus parity exchanges the generators N i
+ ↔ N i

−
and the spinor representations χ↔ η.

4.3 Poincaré group

In addition to the Lorentz transformations, the Poincaré group ISO(1, 3) contains translations by a

constant vector aµ

xµ → x′µ = xµ + aµ . (4.25)

Thus a general group transformation in the Poincaré group is given by a combined Lorentz transfor-

mation with a translation

x′µ = Λµνx
ν + aµ (4.26)

Translations do not commute with Lorentz transformations

x′µ = Λµ1 νx
ν + aµ1 x′′µ = Λµ2 νx

′ν + aµ2 (4.27)

= Λµ2 ν(Λν1 ρx
ρ + aν1) + aµ2 (4.28)

= (Λ2Λ1)µνx
ν + Λµ2 νa

ν
1 + aµ2 (4.29)

The Poincaré group is a so-called semi-direct product group, ISO(1, 3) = P4 o SO(1, 3). Let us now

find the generators for the Poincaré group. The generators of P4 are translations

Pµ = −i∂µ (4.30)

and the generators of Lorentz transformations are

Lµν = i(xµ∂ν − xν∂µ) (4.31)

which satisfy the following commutation relations

[Pµ, P ν ] = 0 (4.32)

[Lµν , Lρσ] = −i(gµρLνσ − gµσLνρ − gνρLµσ + gνσLµρ) (4.33)

[Lµν , P ρ] = −i(gµρP ν − gνρPµ) . (4.34)

More generally, we can define the spin-orbital momentum operator

Mµν = Lµν + Sµν (4.35)
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out of the generators of the Lorentz group Lµν and the hermitian spin generators Sµν . The spin

operators which can be considered as generators of ’internal rotations’ satisfy the same commutation

relations as Lµν and commute with Lµν

[Lµν , Sρσ] = 0 (4.36)

and are thus generators of ISO(1, 3).

We next construct the representations of the Poincaré group. Lorentz transformations change the

4-momentum pµ of a state |p〉, but leave pµp
µ invariant. Consider a state |p〉 with Pµ |p〉 = pµ |p〉 then

the transformed state U(Λ, a) |p〉 = |Λp〉 has momentum

Pµ |Λp〉 = (Λp)µ |Λp〉 , (4.37)

while the interval of the 4-momentum remains the same

(Λp)µ(Λp)µ =Λµνp
νΛνρµ pρ = δρνp

νpρ = p2 (4.38)

where we used ΛµρΛ
ρ
ν = δµν . Thus Lorentz transformations leave the operator PµP

µ invariant. It is

a quadratic Casimir operator, since it commutes with all generators of the Poincaré group, and is

associated with the mass of the particle.

There is another Casimir operator WµW
µ formed from the generators: the Pauli-Lubanski vector

Wµ = −1

2
εµνρσS

νρP σ . (4.39)

As it satisfies WµP
µ = 0, we find a simple expression for the Pauli-Lubanski vector in a frame where

Pµ = (m, 0, 0, 0) and thus Wµ = (0,W1,W2,W3)

Wi = −m
2
εijk0S

jk ≡ m

2
Si (4.40)

where we defined the spin operator Si. The spin operator satisfies the SU(2) commutation relations

and can thus be represented by σi/2. Thus particle states are classified by their mass and spin. In

case of proper orthochronous Poincaré transformations P ↑+ there are in total six cases

1. time-like 4-momentum and positive energy: p2 = m2 > 0, p0 > 0

2. light-like 4-momentum and positive energy: p2 = 0, p0 > 0

3. zero 4-momentum: pµ = 0

4. time-like 4-momentum and negative energy: p2 = m2 > 0, p0 < 0

5. light-like 4-momentum and negative energy: p2 = 0, p0 < 0

6. space-like 4-momentum: p2 < 0
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The first two cases correspond to physical states (particles), the third one corresponds to the vacuum

and the last can represent virtual particles which may have a space-like 4-momentum, while the

remaining ones are unphysical. In the first case the eigenvalue of the mass is real and the eigenvalue of

the second Casimir operator W 2 is given by −m2s(s+ 1), where s denotes the spin. There are 2s+ 1

degrees of freedom for a given spin s which are distinguished by the value of the third component S3.

The second case corresponds to a massless particle: Both P 2 = W 2 = 0 and they are proportional to

each other due to PµW
µ = 0. The proportionality constant is called helicity and equal to ±s, where

s is the spin of the representation.

The variation of a field F under a general Poincaré transformation is given by

δF ≡ F ′(x′)− F (x) = F ′(x+ δx)− F (x) = F ′(x)− F (x) + ∂µF (x)δxµ ≡ δ̄F + ∂µFδx
µ (4.41)

Scalar fields remain the same in different inertial frames, φ′(x′) = φ(x) and thus

δφ = 0 = δ̄φ+ ∂µφδx
µ . (4.42)

For an infinitesimal Lorentz transformation Λµν = δµν + ωµν we find δxµ = ωµνxν and thus δ̄φ =

− i
2ω

µνLµν or Mµν = Lµν and Sµν = 0. The vector field transforms like a Lorentz vector δAµ = ω ν
µ Aν .

4.4 Dirac equation

As we already pointed out there are two irreducible spinor representations of the Lorentz group. Thus

we consider two component spinor fields (Weyl spinors)

ψ′R(x′) ≡ exp

(
iσi

2
(θi − iφi)

)
ψR(x) ψ′L(x′) ≡ exp

(
iσi

2
(θi + iφi)

)
ψL(x) (4.43)

which transform as (1
2 , 0) and (0, 1

2) states, respectively. A Dirac (4-component) spinor is defined as

ψ(x) =

(
ψR(x)

ψL(x)

)
, (4.44)

which transforms under Lorentz transformations [ω0i = φi and ωij = εijkθk]

ψ′(x′) = exp
(
− i

2ωµνΣµν
)
ψ(x) (4.45)

with the generators

Σµν ≡ i

4
[γµ, γν ] (4.46)

constructed out of the γ matrices

γµ =

(
0 σ̄µ

σµ 0

)
(4.47)

43



with σ0 = σ̄0 = 1 and σ̄i = −σi. The fifth γ matrix, γ5 = iγ0γ1γ2γ3, is diagonal

γ5 =

(
1 0

0 −1

)
(4.48)

It is the chirality operator and is used to defined the two projection operators PL,R = 1
2(1∓ γ5) which

project onto the left-handed and right-handed Weyl spinors.

The γ matrices form a Clifford algebra and satisfy the anticommutation relations

{γµ, γν} = γµγν + γνγµ = 2gµν . (4.49)

The Dirac equation

(iγµ∂µ −m)ψ(x) = 0 (4.50)

is the equation of motion for a spin 1
2 fermion which has both left-handed and right-handed compo-

nents. It is convenient to define the Dirac conjugate spinor

ψ̄ ≡ ψ†γ0 (4.51)

which transforms as ψ̄ → ψ̄U(Λ)−1 under a Lorentz transformation ψ → U(Λ)ψ.

The Dirac equation is solved by the particle u (positive energy) and antiparticle v (negative energy)

spinors

(�p−m)us(p) = 0 (�p+m)vs(p) = 0 (4.52)

In the rest frame of the particle the solutions are straightforward to solve. There are two solutions for

each of the equations. We distinguish the two solution by their eigenvalue of the spin matrix

S3 =

(
σ3
2 0

0 σ3
2

)
(4.53)

and denote

S3u±(0) = ±1

2
u±(0) S3v±(0) = ∓1

2
v±(0) (4.54)

Note the different sign for the antiparticle spinor. This is such that both b† and d† create a particle

with spin up in the z-direction, i.e. [J3, d
†
±(0)] = ±1

2d
†
±(0). Thus in the rest frame we find

u+(0) =
√
m


1

0

1

0

 u−(0) =
√
m


0

1

0

1

 v+(0) =
√
m


0

1

0

−1

 v−(0) =
√
m


−1

0

1

0

 (4.55)

The corresponding spinors at finite momentum are found by boosting the spinors which are defined

at rest. The spinors are normalised as

ūs(p)us′(p) = −v̄s(p)vs′(p) = 2mδss′ ūs(p)vs′(p) = 0 (4.56)
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We can construct a projection operator onto the particle states

2mP+ =
∑
s

us(p)ūs(p) (4.57)

It satisfies

P 2
+ = P+ (�p−m)P+ = 0 (4.58)

If we take P+ = a+ b�p as ansatz for P+, we obtain

0 = (�p−m)(a+ b�p) = (a−mb)�p+ b�p�p− am = (a−mb)�p+ bp2 − am (4.59)

⇒ a = mb (4.60)

from the second relation. The first relation P 2
+ = P+ results in b = 1/2m and thus

P+ = �p+m

2m
(4.61)

Similarly the projection operator onto the antiparticle states is given by

2mP− = −
∑
s

vs(p)v̄s(p) = − (�p−m) (4.62)

and their combination satisfies P+ +P− = 1. The most general solution of the Dirac equation is then

a linear combination

ψ(x) =

∫
d3k

(2π)32k0

∑
s

[
bs(k)us(k)e−ikx + d†svs(k)eikx

]
(4.63)

ψ̄(x) =

∫
d3k

(2π)32k0

∑
s

[
b†s(k)ūs(k)eikx + dsv̄s(k)e−ikx

]
(4.64)

with coefficients bs and ds.

4.5 Canonical quantisation

The Dirac equation can be obtained from the Lagrangian16

L = ψ̄ (i�∂ −m)ψ (4.66)

where we introduced the Dirac slash notation �∂ ≡ γµ∂µ. The fields ψ and ψ̄ are treated as dynamically

independent fields. The conjugate momentum is

π =
∂L
∂ψ̇

= iψ† (4.67)

16The Lagrangian is not hermitian, but it is equivalent to a hermitian one up to a total derivative

L+ total derivative =
i

2
ψ̄
↔

�∂ ψ −mψ̄ψ =
i

2

(
ψ̄�∂ψ − (∂µψ̄)γµψ

)
−mψ̄ψ . (4.65)
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and thus the Hamiltonian density is

H = πψ̇ − L = ψ†γ0(−iγi∂i +m)ψ (4.68)

= ψ†i∂tψ (4.69)

where the Dirac equation has been used in the last line. From this we can calculate the Hamiltonian

H =

∫
d3xH =

∫
d3k

(2π)32k0
k0
∑
s

[
b†s(k)bs(k)− ds(k)d†s(k)

]
. (4.70)

If we quantise with commutators, the d-quanta have negative energy. The way out is to quantise the

field with anti-commutators {A,B} = AB +BA

{ψi(x, t), π(y, t)} = iδijδ
(3)(x− y) {ψi(x, t), ψj(y, t)} = {πi(x, t), π(y, t)} = 0 (4.71)

The equal-time anticommutation relation of the field operators translate in the anticommutation

relations of the creation and annihilation operators

{bs(k), b†s′(k
′)} = {ds(k), d†s′(k

′)} = (2π)32k0δ(3)(~k − ~k′)δss′ (4.72)

{bs(k), bs′(k
′)} = {b†s(k), b†s′(k

′)} = 0 (4.73)

{ds(k), ds′(k
′)} = {d†s(k), d†s′(k

′)} = 0 (4.74)

{ds(k), b†s′(k
′)} = {bs(k), d†s′(k

′)} = 0 (4.75)

and hence all particles have positive energy.

Similarly to the complex scalar field, the Lagrangian of a Dirac fermion is invariant under a global

phase rotation φ→ eiαψ. The associated conserved charge is

Q =

∫
d3k

(2π)32k0

∑
s

[
b†s(k)bs(k)− d†s(k)ds(k)

]
(4.76)

and thus b† creates particles with positive charge and d† creates the corresponding antiparticles with

negative charge. Similarly to scalar quantum electrodynamics we can promote the global symmetry

to a local symmetry by replacing the ordinary derivative by a covariant derivative Dµ = ∂µ + iqeAµ,

where q denotes the charge of the particle in units of e. This defines quantum electrodynamics

LQED = −1

4
FµνF

µν + ψ̄(i��D −m)ψ . (4.77)

It is straightforward to derive an expression for the Feynman propagator. We have seen in the

case of the scalar and gauge fields that the Feynman propagator is a Green’s function for the differ-

ential operator, where we appropriately shift the poles in the complex plane summarised in the +iε

prescription. Here the Green’s function is

(i�∂x −m)αγSγβ(x− y) = δ4(x− y)δαβ (4.78)

where α, β are spinor indices, and thus we obtain for the Feynman propagator

iSαβ(x− y) =
〈
0|Tψα(x)ψ̄β(y)|0

〉
(4.79)

S(x− y) =

∫
d4p

(2π)4
�p+m

p2 −m2 + iε
e−ip(x−y) =

∫
d4p

(2π)4

e−ip(x−y)

�p−m+ iε
. (4.80)
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4.6 LSZ reduction formula

Similarly to the gauge field and the scalar fields we can derive the LSZ reduction formula. One-particle

states are created by the creation operators where we distinguish between the particle and antiparticle

states

|p, s,+〉 = b†s(p) |0〉 |p, s,−〉 = d†s(p) |0〉 (4.81)

with the normalisation 〈p, s, q|p′, s′, q′〉 = (2π)32k0δ(3)(p−p′)δss′δqq′ . We can invert the field expansion

to obtain the creation operators17

b†s(p) =

∫
d3xe−ipxψ̄(x)γ0us(p) d†s(p) =

∫
d3xe−ipxv̄s(p)γ

0ψ(x) (4.83)

and the corresponding annihilation operators. This leads to the following replacements in scattering

amplitudes

b†s(p)in → i

∫
d4xψ̄(x)(i

←
�∂ −m)us(p)e

−ipx bs(p)out → i

∫
d4xeipxūs(p)(i�∂ −m)ψ(x) (4.84)

d†s(p)in → i

∫
d4xe−ipxv̄s(p)(i�∂ +m)ψ(x) ds(p)out → i

∫
d4xψ̄(x)(i

←
�∂ +m)vs(p)e

ipx . (4.85)

This holds also for an interacting field theory, if the Dirac field is properly normalised

〈0|ψ(x)|0〉 = 0 (4.86)

〈0|ψ(x)|p, s,+〉 = us(p)e
−ipx 〈0|ψ(x)|p, s,−〉 = 0 (4.87)〈

0|ψ̄(x)|p, s,+
〉

= 0
〈
0|ψ̄(x)|p, s,−

〉
= v̄s(p)e

−ipx . (4.88)

4.7 Fermionic path integral

In order to define the path integral for fermions, we first have to introduce Grassmann numbers,

anticommuting c-numbers. See Sec. 6.7 in Ryder for a more detailed discussion. It is in fact a graded

algebra. The generators Ci of an n-dimensional Grassmann algebra satisfy

{Ci, Cj} = 0 ⇒ C2
i = 0 , (4.89)

i.e. the generators are nilpotent. This implies that the expansion of any function in terms of the

generators only contains a finite number of terms, e.g.

f(C1, C2) = a0 + a1C1 + a2C2 + a3C1C2 = a0 + a1C1 + a2C2 − a3C2C1 (4.90)

17In order to show this we need the normalisation in terms of u† instead of ū. It can be shown that

u†s(p)us′(p) = 2p0δss′ v†s(p)vs′(p) = −2p0δss′ . (4.82)
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We define differentiation as a left-differentiation (acting from the left)

∂f

∂C1
= a1 + a3C2

∂f

∂C2
= a2 − a3C1 (4.91)

The derivatives satisfy the following anticommutation relations

{Ci,
∂

∂Cj
} = δij { ∂

∂Ci
,
∂

∂Cj
} = 0 (4.92)

which are straightforward to show. In order to define integration the infinitesimals also have to be

Grassmann quantities

{Ci, dCj} = {dCi, dCj} = 0 (4.93)

Multi-dimensional integrals are defined by iteration∫
dC1dC2f(C1, C2) =

∫
dC1

(∫
dC2f(C1, C2)

)
. (4.94)

Using this we can show(∫
dC1

)2

=

∫
dC1dC2 = −

∫
dC2dC1 = −

(∫
dC1

)2

⇒
∫
dC1 = 0 (4.95)

As there the fermionic integrals are scaleless we define the integral∫
dCiCi = 1 ⇒

∫
dCiCj = δij . (4.96)

Using these relations we can now evaluate integrals over general functions, for example the function

f defined above∫
dC1f =

∫
dC1 [a0 + a1C1 + a2C2 + a3C1C2] (4.97)

=

∫
dC1a0 + a1

∫
dC1C1 − a2C2

∫
dC1 + a3C2

∫
dC1C1 = a1 + a3C2 (4.98)

which exactly agrees with the result of the derivative. Changing variables from Ci to αi, C = Mα,

we find

C1C2 = (M11α1 +M12α2)(M21α1 +M22α2) (4.99)

= (M11M22 −M12M21)α1α2 = detMα1α2 (4.100)

and thus in order for the integral to preserve our integration rules, we have to demand that

dC1dC2 = (detM)−1dα1dα2 (4.101)

Now considering 2 complex Grassmann quantities η and η̄, we find for the exponential

exp(−η̄η) = 1− η̄η ⇒
∫
dη̄dη exp(−η̄η) = 1 . (4.102)
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Let us generalise the result to higher dimensions. In 2 dimensions the inner product reads η̄η =

η̄1η1 + η̄2η2 and thus

(η̄η)2 = (η̄1η1 + η̄2η2)2 = 2η̄1η1η̄2η2 (4.103)

and thus ∫
dη̄dηe−η̄η =

∫
dη̄1dη1dη̄2dη2e

−η̄η =

∫
dη̄1dη1dη̄2dη2 η̄1η1η̄2η2 = 1 . (4.104)

The same result applies in n-dimensional space. In particular we find for the Gaussian integral∫
dη̄dηe−η̄iAijηj = detA . (4.105)

Equipped with this we can define the path integral for the free Dirac field

Z0[η, η̄] =
1

N

∫
Dψ̄Dψ exp

(
i

∫
d4xψ̄(i�∂ −m)ψ + η̄ψ + ψ̄η

)
(4.106)

with some normalisation constant N . Completing the squares and performing the fermionic Gaussian

integral leads to the partition function

Z0[η, η̄] = exp

(
−i
∫
d4xd4yη̄(x)S(x− y)η(y)

)
. (4.107)

Taking two derivatives we obtain the propagator〈
0|Tψ(x)ψ̄(y)|0

〉
=

1

i

δ

δη̄(x)
i

δ

δη(y)
Z0[η, η̄]

∣∣∣∣
η=η̄=0

= iS(x− y) . (4.108)

The different sign for the functional derivative with respect to η is chosen to cancel the sign coming

from the ordering of the sources in the exponential. For an interacting fermionic field theory we can

follow the same steps as for a bosonic interacting field theory, while carefully keeping track of signs

from commuting the fermionic fields.

4.8 Quantum electrodynamics (QED)

In particular for quantum electrodynamics which is described by the Lagrangian

LQED = −1

4
FµνF

µν + ψ̄(i��D −m)ψ (4.109)

with Dµ = ∂µ + iqeAµ we obtain the following set of Feynman rules

α β

p

i(�p+m)αβ
p2−m2+iε

µ ν

p

−igµν
p2+iε

µ

α

β

−iqeγµαβ

(4.110)

External incoming (outgoing) photons yield a factor ελµ (ελ∗µ ), incoming (outgoing) fermions yield a

factor us, (ūs), incoming (outgoing) antifermions yield a factor v̄s (vs). Fermion lines always have to

be evaluated against the arrow of the fermion line. Exchanging two external fermion lines yields a

factor −1. Closed fermion loops yield a factor −1.
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A Review

A.1 Quantum harmonic oscillator

The last 1D example which we are studying is the harmonic oscillator. It is very important approxi-

mation to many physical phenomena such as the vibrational modes of a diatomic molecule as shown

in Fig. 5. A particle with mass m is subject to a restoring force −kx, where x is the displacement

Figure 5: First few vibrational modes of a diatomic molecule are well described by a harmonic oscil-

lator. Figure taken from https://en.wikipedia.org/wiki/File:Morse-potential.png.

from the equilibrium position. The potential energy of the particle is

V (x) =
1

2
kx2 =

1

2
mω2x2 (A.1)

where ω =
√
k/m is the angular oscillation frequency. Thus its Hamiltonian is

H =
p̂2

2m
+

1

2
mω2x̂2 = − ~2

2m

d2

dx2
+

1

2
mω2x2 (A.2)

and the time-independent Schrödinger equation is given by(
− ~2

2m

d2

dx2
+

1

2
mω2x2

)
ϕE(x) = EϕE(x) . (A.3)

Now we will be going one step and solve the quantum harmonic oscillator using the ladder operator

method.

In order to simplify our following discussion, we define the variable

ξ =

√
mω

~
x

d

dξ
=

√
~
mω

d

dx
(A.4)
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and can rewrite our Hamiltonian in Eq. (A.2) as follows

H =
1

2
~ω
(
− d2

dξ2
+ ξ2

)
(A.5)

In the next step we want to factorise the Hamiltonian in analogy to the identity

u2 − v2 = (u− v)(u+ v) . (A.6)

Hence we form two new operators as linear combination of the old ones

a =
1√
2

(
ξ +

d

dξ

)
=

√
mω

2~

(
x̂+ i

p̂

mω

)
(A.7)

a† =
1√
2

(
ξ − d

dξ

)
=

√
mω

2~

(
x̂− i p̂

mω

)
. (A.8)

The operators satisfy the following commutation relation

[a, a†] = 1 . (A.9)

Looking at the product of the two operators

a†a =
1√
2

(
ξ − d

dξ

)
1√
2

(
ξ +

d

dξ

)
(A.10)

=
1

2

(
ξ2 − d2

dξ2
+ ξ

d

dξ
− d

dξ
ξ

)
(A.11)

=
1

2

(
ξ2 − d2

dξ2
+ [ξ,

d

dξ
]

)
(A.12)

=
1

2

(
ξ2 − d2

dξ2
− 1

)
(A.13)

we observe that we almost obtain the result which we wanted to obtain. Hence, the Hamiltonian can

be rewritten as

H = ~ω
(
a†a+

1

2

)
. (A.14)

Before interpreting the operators â and â† physically, we have to show two more commutation

relations:

[H, a] = Ha− aH (A.15)

= ~ω
(
a†a+

1

2

)
a− a~ω

(
a†a+

1

2

)
(A.16)

= ~ω
(
a†aa− aa†a

)
(A.17)

= ~ω
(
a†aa−

(
a†a+ [a, a†]

)
a
)

(A.18)

= −~ωa (A.19)
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Now given an energy eigenstate |E〉 with a given energy E, we can calculate the energy eigenvalue of

the states a |E〉 as follows

H(a |E〉) = Ha |E〉 (A.20)

= (aH + [H, a]) |E〉 (A.21)

= (aE − ~ωa) |E〉 (A.22)

= (E − ~ω)(a |E〉) (A.23)

Similarly for the operator a†

[H, a†] = +~ωa† . (A.24)

and

H(a† |E〉) = (E + ~ω)(a† |E〉) . (A.25)

Hence the states a |E〉, a† |E〉 are also energy eigenstates with energies E ± ~ω, respectively. The

operators a and a† transform a state with energy E into a state with energy E ± ~ω. They are

denoted ladder operators, more specifically a† is denoted raising operator and a lowering operator.

Next we have to find the lowest energy eigenstate or ground state. Classically we observe that

there is a minimum energy of the harmonic oscillator. Hence there has to be a lowest energy eigenstate

a |Elowest〉 = 0 . (A.26)

This is called the ladder termination condition. The energy of this lowest energy eigenstate is given

by

H |Elowest〉 = ~ω
(
a†a+

1

2

)
|Elowest〉 =

1

2
~ω |Elowest〉 . (A.27)

Note that lowest energy level is not zero as it would be for a classical harmonic oscillator, but 1
2~ω.

It is known as zero point energy and ultimately due to the non-vanishing commutator of the ladder

operators [a, a†] = 1. The lowest energy eigenstate is commonly denoted |0〉. The energy of the nth

state |n〉 is given by

En = ~ω
(
n+

1

2

)
, (A.28)

because applying the raising operator a† n times increases the energy with respect to the lowest energy

eigenstate by n × ~ω. In addition to the ladder operators it is convenient to introduce the number

operator,

N̂ = â†â , (A.29)

which counts the energy quanta. It fulfils the following eigenvalue equation

N̂ |n〉 = n |n〉 , (A.30)
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â† â
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â† â

â† â

â† â

â† â

â† â

Figure 6: Energy levels of harmonic oscillator. Raising operator a† increases energy by ~ω and

lowering operator a lowers it. Figure taken from https://commons.wikimedia.org/w/index.php?

curid=11623546.

where the n in |n〉 denotes the number of energy quanta. We can rewrite the Hamiltonian as

Ĥ = ~ω
(
N̂ +

1

2

)
. (A.31)

See Fig. 6 for an illustration of the action of the ladder operator on the energy eigenstates. All other

energy eigenstates can be constructed from the lowest energy eigenstate using the raising operator.

By demanding that all states |n〉 are properly normalised,

〈n|n〉 = 1 , (A.32)

it is possible to show18 that the raising and lowering operators act on a state |n〉

a |n〉 =
√
n |n− 1〉 (A.33)

a† |n〉 =
√
n+ 1 |n+ 1〉 . (A.34)

Thus we can write the state |n〉 as follows

|n〉 ≡ 1√
n!

(
a†
)n
|0〉 , (A.35)

where we denoted the lowest energy eigenstate by |0〉. The factor 1/
√
n! ensures that the states are

correctly normalised.

The wave function of the lowest energy eigenstate φ0(ξ) can be determined from the ladder termi-

nation condition in Eq. (A.26)

0 = aφ0(ξ) =
1√
2

(
ξ +

d

dξ

)
φ0(ξ) . (A.36)

18See the discussion in McIntyre Chap.9.

53

https://commons.wikimedia.org/w/index.php?curid=11623546
https://commons.wikimedia.org/w/index.php?curid=11623546


It is an ODE, which can be solved using standard techniques

φ0(ξ) =
(mω
π~

)1/4
e−ξ

2/2 . (A.37)

The explicit form of the wave function involves a well studied special function, the Hermite polynomial,

such that the normalised wave functions can be written as

ϕE(x) =
(mω
π~

)1/4 1√
2nn!

Hn(ξ)e−ξ
2/2 with ξ =

√
mω

~
x and n = 0, 1, 2, 3, . . . (A.38)

where Hn is a Hermite polynomial of order n

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2 H3(x) = 8x3 − 12x . (A.39)

Figure 7 shows wave functions and probability densities for the first four energy levels of a harmonic

oscillator.

Figure 7: (a) Wave functions and (b) the probability density for the first four energy levels of a

harmonic oscillator.

A.2 Time-dependent perturbation theory in quantum mechanics

As we are dealing with a time-dependent Hamiltonian, we have to return to the Schrödinger equation

in its original form. So far we always considered the Hamiltonian to be time-independent, while the

quantum states evolved with time. This is commonly denoted as Schrödinger picture. If we however

consider the states19

|ψ〉H ≡ e
iĤt/~ |ψ(t)〉 =

(
1 +

i

~
Ĥt+

1

2

[
i

~
Ĥt

]2
)
|ψ(t)〉 (A.40)

we find that

i~
∂

∂t
|ψ〉H = i~

∂

∂t
eiĤt/~ |ψ(t)〉 = eiĤt/~

(
−Ĥ |ψ(t)〉+ i~

∂

∂t
|ψ(t)〉

)
= 0 (A.41)

19Note that eÂ =
∑∞
n=0

1
n!
Ân.
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This is commonly denoted as Heisenberg picture. In this picture, all operators

ÂH(t) = eiĤt/~Âe−iĤt/~ , (A.42)

e.g. momentum operator, will be time-dependent and satisfy

d

dt
ÂH(t) =

i

~
[ĤH(t), ÂH(t)] +

(
∂Â

∂t

)
H

. (A.43)

Thus the eigenvalues of any operator, which commutes with the Hamiltonian, are contants and provide

good quantum numbers to describe the system. We will now consider the interaction picture, in which

both the Hamiltonian and the quantum state will depend on time. It is useful for cases, where we can

split the Hamiltonian Ĥ(t) = Ĥ0 + Ĥ ′(t) in a time-independent part Ĥ0 and a time-dependent one

Ĥ ′. It is defined by

|ψ(t)〉I = eiĤ0t/~ |ψ(t)〉 ÂI(t) = eiĤ0t/~Âe−iĤ0t/~ . (A.44)

We rewrite the Schrödinger equation for the Hamiltonian Ĥ = Ĥ0+Ĥ ′(t) in the interaction picture

i~
∂

∂t
|ψ(t)〉I = i~

∂

∂t
eiĤ0t/~ |ψ(t)〉 (A.45)

= −Ĥ0 |ψ(t)〉I + eiĤ0t/~i~
∂

∂t
|ψ(t)〉 (A.46)

= −Ĥ0 |ψ(t)〉I + eiĤ0t/~
(
Ĥ0 + Ĥ ′(t)

)
|ψ(t)〉 (A.47)

= −Ĥ0 |ψ(t)〉I + eiĤ0t/~
(
Ĥ0 + Ĥ ′(t)

)
e−iĤ0t/~ |ψ(t)〉I (A.48)

= eiĤ0t/~Ĥ ′(t)e−iĤ0t/~ |ψ(t)〉I (A.49)

= Ĥ ′I(t) |ψ(t)〉I . (A.50)

We used that the exponential exp(iH0t/~) commutes with H0. Finally, we can now formally integrate

the equation and obtain the equivalent integral equation

|ψ(t)〉I = |ψ(t0)〉I +
1

i~

∫ t

t0

Ĥ ′I(t
′)
∣∣ψ(t′)

〉
I
dt′ . (A.51)

This integral equation can be iteratively solved by plugging the solution back in on the right-hand

side of the equation, i.e.

|ψ(t)〉I = |ψ(t0)〉I +
1

i~

∫ t

t0

Ĥ ′I(t
′) |ψ(t0)〉I dt

′ +

(
1

i~

)2 ∫ t

t0

dt′
∫ t′

t0

dt′′Ĥ ′I(t
′)Ĥ ′I(t

′′) |ψ(t0)〉I + . . .

(A.52)

We introduce the time-ordered product of operators to simplify the expression further. The time-

ordered product of two operators A and B is defined as

T (A(t1)B(t2)) ≡

A(t1)B(t2) for t1 ≥ t2
B(t2)A(t1) otherwise

. (A.53)
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This allows us to rewrite the quadratic term as∫ t

t0

dt′
∫ t′

t0

dt′′Ĥ ′I(t
′)Ĥ ′I(t

′′) =

∫ t

t0

dt′
∫ t′

t0

dt′′T
(
Ĥ ′I(t

′)Ĥ ′I(t
′′)
)

= T

(∫ t

t0

dt′
∫ t′

t0

dt′′Ĥ ′I(t
′)Ĥ ′I(t

′′)

)
(A.54)

= T

(∫ t

t0

dt′′
∫ t′′

t0

dt′Ĥ ′I(t
′′)Ĥ ′I(t

′)

)
= T

(∫ t

t0

dt′′
∫ t′′

t0

dt′Ĥ ′I(t
′)Ĥ ′I(t

′′)

)
(A.55)

=
1

2
T
(∫ t

t0

dt′
∫ t

t0

dt′′Ĥ ′I(t
′)Ĥ ′I(t

′′)

)
=

1

2
T
(∫ t

t0

dt′Ĥ ′I(t
′)

)2

, (A.56)

where we introduced the time-ordered product in the first line, relabelled the integration variables

t′ ↔ t′′ in the second line, and noticed that summing the last terms of the first and second line and

dividing by 2 can be rewritten as the first term of the third line. Hence we can write the quadratic

term as the square of the integral and

|ψ(t)〉I = |ψ(t0)〉I +
1

i~

∫ t

t0

Ĥ ′I(t
′)dt′ |ψ(t0)〉I +

1

2
T
(

1

i~

∫ t

t0

dt′H ′I(t
′)

)2

|ψ(t0)〉I + . . . (A.57)

= T
(
e
− i~

∫ t
t0
Ĥ′I(t′)dt′

)
|ψ(to)〉I . (A.58)

We will only consider the leading order transitions and neglect terms with more than one Ĥ ′. If

we have the set of eigenstates |n〉 to the Hamiltonian Ĥ0 with eigenvalue En, we can calculate the

transition amplitude to find our particle in state |n〉 at time t if we start in state |m〉 at time t0. The

system is initially in the state

|m(t)〉 = e−iH0t/~ |m〉 = e−iEmt/~ |m〉 , (A.59)

where |m(t)〉 denotes the state |m〉 which has been evolved to time t with the Hamiltonian H0. The

probability amplitude that there is a transition to the state

|n(t)〉 = e−iH0t/~ |n〉 = e−iEnt/~ |n〉 (A.60)

is given by

〈n(t)|ψ(t)〉 =
〈
n|eiH0t/~|ψ(t)

〉
= 〈n|ψ(t)〉I (A.61)

where the subscript I indicates the interaction picture. The initial state |ψ(t0)〉I = eiH0t/~ |m(t)〉 =

|m〉. Inserting the states in Eq. (A.52), we find

〈n|ψ(t)〉I = 〈n|m〉+
1

i~

∫ t

t0

〈
n|Ĥ ′I(t′)|m

〉
dt′ (A.62)

= δnm +
1

i~

∫ t

t0

ei(En−Em)t′/~
〈
n|Ĥ ′(t′)|m

〉
dt′ ,
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where we used the definition of an operator in the interaction picture in Eq. (A.44). Note that all

expressions in the last line are given in the usual Schrödinger picture, which we worked with in the

previous sections. The probability for a transition from the state |m〉 to the state |n〉 6= |m〉 is given

by

Pmn(t) =

∣∣∣∣ 1

i~

∫ t

t0

dt′ei(En−Em)t′/~
〈
n|Ĥ ′(t′)|m

〉∣∣∣∣2 . (A.63)

The first term in Eq. (A.62) corresponds to an unchanged quantum state |m〉, which has not been

affected by any interaction. The second term describes one transition between two states induced by

the Hamiltonian Ĥ ′:

1. We start with a quantum system in the eigenstate |m〉 of the Hamiltonian H0.

2. Then we evolve the quantum system in time from t0 to t′ using the Hamiltonian H0. Thus

eigenstates |m〉 of H0 do not change and only pick up a phase factor exp(iEm(t′ − t0)/~).

3. At time t′, the Hamiltonian Ĥ ′ affects the quantum system and leads to transitions between

states, depending on the matrix elements
〈
n|Ĥ ′|m

〉
.

4. After the interaction, the system is in a new state |n〉 and we evolve it with the Hamiltonian H0

in time from t′ to t and the quantum state picks up a phase factor exp(iEn(t− t′)/~).

5. The transition probability is given by projecting this state at time t onto the eigenstates of H0.

We explicitly include the phase factors from time evolution.

Higher order terms in Eq. (A.52) can be interpreted in the same way. The only difference is that

there will be multiple transitions at different times t′ , t′′, . . . , and the quantum states between the

transitions are evolved in time using the Hamiltonian H0 leading to additional phase factors.

A.3 Green’s function

Consider a differential equation of the form

Lψ(x) = f(x) (A.64)

with a linear differential operator L = L(x). The Green’s function G(x, y) of the differential operator

is defined by

LG(x, y) = −δ(x− y) . (A.65)

It can be used to obtained a general solution for the differential equation Eq. (A.64)

ψ(x) = −
∫
dyG(x, y)f(y) . (A.66)

This is straightforward to see

Lψ(x) = L

(
−
∫
dyG(x, y)f(y)

)
= −

∫
dyLG(x, y)f(y) =

∫
dyδ(x− y)f(y) = f(x) . (A.67)
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A.4 Group theory

Symmetries are fundamental ingredients in describing physics. A symmetry transformation is a re-

versible operation which does not change the physical system. The set of symmetry transformations

form a group.

Definition: A group G is a set of elements with an operation of multiplication that satisfies the

following four properties:

1. Closure: A,B ∈ G⇒ AB ∈ G

2. Associativity: A,B,C ∈ G⇒ (AB)C = A(BC)

3. Identity: there is E ∈ G such that AE = EA = A for all A ∈ G

4. Inverse: For all A ∈ G there is A−1 : AA−1 = E

Examples include

• Trivial group: {E}

• Discrete Z2 group {A,E} ∈ Z2, A = A−1 and thus E = AA−1 = A2

• O(N) the orthogonal group: group of n× n orthogonal real matrices

• SO(N) the special orthogonal group: group of n × n orthogonal real matrices with unit deter-

minant

• U(1) the unit complex numbers {eiα}, α ∈ R

• U(N) the unitary group: group of n× n complex unitary matrices

• SU(N) the special unitary group: group of n×n complex unitary matrices with unit determinant

• Lorentz group SO(3, 1) with its spin group SL(2, C).

The first two examples are so-called discrete finite groups. The remaining examples are Lie groups,

which are continuous groups. In fact all of them (apart from the Lorentz group) are compact. U(1),

SU(N) and SO(N) are so-called simply Lie groups. The unitary group can be decomposed in terms

of the special unitary group and the unit complex numbers: U(N) ∼= SU(N)× U(1).

A.4.1 Lie groups

The connected component of Lie group which contains the identity can be described by the underlying

Lie algebra. If A is an element in the Lie algebra, exp(αA), α ∈ R is a one-parameter family of group

elements in the Lie group. The vector space of the Lie algebra can be described by the so-called

”generators” which form a basis. Thus any element of the Lie algebra (and the connected component

of the identity in the Lie group) can be described in terms of those generators. In physics we generally
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use exp(iαiT
i) with real parameters αi and hermitean matrices T i. For example the generators of the

spin group SU(2) are the Pauli matrices. For SU(3) they are the so-called Gell-Mann matrices. As

SU(N) is a unitary group, the generators are hermitean matrices. In physics we typically normalize

the generators as tr(T aT b) = 1
2δ
ab.

A.4.2 Representations

Symmetries leave the system invariant, but transform states |ψ〉 ∈ H in the Hilbert space. Represen-

tations are defined as mappings from the abstract group to linear transformations acting on a vector

space which preserve the group structure. For example the group SU(2) can be represented by 2× 2

special unitary matrices. In particular the generators are the Pauli matrices

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)
(A.68)

We can however similarly construct a 3-dimensional representation by mapping the three generators

of SU(2) to the matrices

J1 =
1√
2

0 1 0

1 0 1

0 1 0

 J2 =
i√
2

0 −1 0

1 0 −1

0 1 0

 J3 =

1 0 0

0 0 0

0 0 −1

 . (A.69)

A.4.3 Special relativitiy and the Lorentz group

The equivalence of inertial reference frames implies that space is isotropic and homogeneous and time

is also homogeneous. It is not possible to distinguish inertial reference frames. In particular, light

moves at the same speed in every reference frame F (F ′): the distance travelled, r(′) = ct(′). Hence

0 = (ct)2 − r2 = (ct′)2 − r′2 and more generally the interval s

s2 = c2t2 − xixi = c2t′2 − x′ix′i (A.70)

with r2 = xixi =
∑

i(x
i)2 is the same in all inertial reference frames. Linear transformations which

leave the interval s unchanged are known as Lorentz transformations.

We measure time in the same units as distance, i.e. c = 1, and combine both of them in a 4-vector

xµ, µ = 0, 1, 2, 3 with

x0 = t and (xi) =

x
1

x2

x3

 (A.71)

and thus the interval s is

s2 = x0x0 − xixi = ηµνx
µxν (A.72)
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with the metric tensor

(ηµν) =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (A.73)

From the condition that the interval s is invariant under Lorentz transformations x′µ = Λµνxν

ηµνx
′µx′ν = ηµνΛµρΛ

ν
σx

ρxσ ≡ ηρσxρxσ (A.74)

it follows that Lorentz transformations satisfy

ηρσ = ηµνΛµρΛ
ν
σ ⇔ η = ΛT ηΛ (A.75)

Taking the determinant we find that

det Λ =

1 proper Lorentz transformations

−1 improper Lorentz transformations
(A.76)

and the 00 component yields the condition |Λ0
0| ≥ 1. If Λ0

0 ≥ 1(≤ −1) it is an orthochronous (non-

orthochronous) Lorentz transformation. Thus the Lorentz group splits in 4 disconnected components

proper orthochronous L↑+ : det Λ = 1,Λ0
0 ≥ 1 (A.77)

proper non-orthochronous L↓+ : det Λ = 1,Λ0
0 ≤ −1 (A.78)

improper orthochronous L↑− : det Λ = −1,Λ0
0 ≥ 1 (A.79)

improper non-orthochronous L↓− : det Λ = −1,Λ0
0 ≤ −1 (A.80)

The set of events parameterized by xµ coordinates together with the metric tensor ηµν defines a

space called the Minkowski space-time. Distances are invariant under Lorentz transformations

∆s2 = ηµν(xµ − yµ)(xν − yν) ds2 = ηµνdx
µdxν (A.81)

Indices are lowered and raised with ηµν and ηµν (the components of the inverse of the metric, η−1.

4-vectors with an upper index xµ are called contravariant vectors and with a lower index xµ covariant

(co-vary with the basis) vectors. Covariant vectors form the dual vector space to the contravariant

vectors. A general mixed tensor transforms as

T ′µ1µ2...mukν1ν2...νl
= Λµ1ρ1Λµ2ρ2 . . .Λ

µk
ρk

Λ σ1
ν1 Λ σ2

ν2 . . .Λ
σl
νl
T ρ1ρ2...ρkσ1σ2...σl

. (A.82)

60


	Spin 0 – scalar field theory
	Relativistic classical field theory
	Least action principle
	Symmetries and Noether's theorem
	Canonical quantization – free real scalar field
	Complex scalar field
	Lehmann-Symanzik-Zimmermann (LSZ) reduction formula
	Spin-statistics connection

	Feynman path integral
	Expectation values of operators
	Vacuum-vacuum transition
	Lagrangian version
	Quantum harmonic oscillator
	Free scalar field
	Interacting scalar field theory
	Scattering matrix

	Spin 1 – gauge theories
	Gupta-Bleuler quantization
	LSZ reduction formula for quantum electrodynamics
	Path integral quantization of quantum electrodynamics

	Lorentz group and spin  repstopdf12 fermions
	Rotations, spin and the SU(2) group
	Lorentz group
	Poincaré group
	Dirac equation
	Canonical quantisation
	LSZ reduction formula
	Fermionic path integral
	Quantum electrodynamics (QED)

	Review
	Quantum harmonic oscillator
	Time-dependent perturbation theory in quantum mechanics
	Green's function
	Group theory


