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The first part on of the lecture will follow Dodelson, Modern Cosmology [1] closely. See also the
lecture notes on cosmology by Daniel Baumann [2]. Throughout the notes, we will use natural units:

~ = c = kB = 1 .
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1 Metric and Distances

See also Dodelson, Modern Cosmology [1], chapter 2, lectures notes by Daniel Baumann [2], chapter
1, and Kolb/Turner, The Early Universe [3], chapter 1-3.

1.1 Friedmann-Robertson-Walker (FRW) Metric

Hubble discovered in 1929[4] that distant galaxies are moving away from us. His observation is shown
in Fig. 1. From this diagram, we can extract the slope, called Hubble rate H0, today,

Figure 1: Hubble diagram: velocity — distance relation among extra-galactic nebulae. The velocity
is in km sec−1 and the distance in Mpc.

H0 = 100hkm sec−1 Mpc−1 . (1.1)

The Planck satellite mission measured H0 = (67.8± 0.9) km sec−1 Mpc−1 [5] and thus h = 0.68± 0.9.
Moreover when averaged over large scales the universe looks isotropic, i.e. the same in all di-

rections. If we do not live at a special place, then the universe is also homogeneous, i.e. the same
everywhere. This is commonly denoted as cosmological principle which motivates and indeed deter-
mines the Friedmann-Robertson-Walker (FRW) metric

ds2 = −dt2 + a(t)2 × d`2 with d`2 = γijdx
idxj (1.2)

where d`2 is a symmetric 3-space:

• Euclidean space: zero curvature

d`2 = dx2 = δijdx
idxj (1.3)

• S3 (3-sphere): positive curvature

d`2 = dx2 + du2 x2 + u2 =a2 (1.4)

• H3 (3-hyperboloid): negative curvature

d`2 = dx2 − du2 x2 − u2 =− a2 (1.5)
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Figure 2: Expansion in an FRW Universe. Copied from [1]

After some algebra the FRW metric can be written as

ds2 = −dt2 + a(t)2

(
dr2

1− kr2
+ r2dΩ2

)
= −dt2 + a(t)2

(
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

))
, (1.6)

where k = 0 for a flat Universe, k = 1 for a closed Universe with positive curvature, k = −1 for an
open Universe with negative curvature. The parameter a is called scale factor and describes how the
Universe expands, while k is the curvature parameter. See Fig. 2.

The line element is invariant under the following rescaling symmetry

a→ λa r → r/λ k → λ2k , (1.7)

which can be used to either set the curvature parameter to 0,±1 or the scale factor today a(t0) ≡ 1.
The coordinate r is called comoving coordinate. It is very useful in calculations. However physical
results depend only on the physical coordinate rph and the physical curvature kph

rph = a(t)r kph = k/a2(t) (1.8)

The physical velocity is

vph ≡
drph
dt

= a(t)
dr

dt
+
da

dt
r ≡ vpec +Hrph (1.9)

with the peculiar velocity and the Hubble parameter

H ≡ 1

a

da

dt
(1.10)

The metric can be conveniently rewritten in terms of a static part and the scale factor

ds2 = a(t)2

(
−dτ2 +

dr2

1− kr2
+ r2dΩ2

)
= a(t)2 × static metric (1.11)

after introducing conformal time (”comoving time”)

τ =

∫
dt

a(t)
. (1.12)

Rewriting the radial component in terms of the comoving distance

χ =

∫
dr√

1− kr2
(1.13)
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we obtain another useful form of the metric

ds2 = a(t)2
[
−dτ2 + dχ2 + S2

k(χ)dΩ2
]

(1.14)

with the metric distance dm

dm ≡ Sk(χ) =


R0 sinh χ

R0
k = −1

χ k = 0

R0 sin χ
R0

k = +1

. (1.15)

The metric distance equals the comoving distance in a flat spacetime. We will mainly consider a flat
universe (k = 0) with metric

(gµν) =


−1

a(t)2

a(t)2

a(t)2

 . (1.16)

1.2 Redshift

Almost all observations rely on photons.
The wavelength of a photon similarly grows with the scale factor. The light emitted at time t1

with wavelength λ1 will be observed at time t0 with wavelength1

λ0 =
a(t0)

a(t1)
λ1 (1.17)

and consequently the wavelength increases when the universe is expanding, a(t0) > a(t1) and thus
redshifted. The redshift parameter z is defined as the fractional shift in wavelength

z =
λ0 − λ1

λ1
(1.18)

and thus

1 + z =
a(t0)

a(t1)
. (1.19)

Using the common definition a(t0) = 1 the redshift is related to the scale factor of the emitter

1 + z =
1

a(t1)
. (1.20)

For nearby sources the scale factor can be expanded using the Hubble constant H0 ≡ ȧ(t0)/a(t0)

a(t1) = a(t0) [1 +H0(t1 − t0) + . . . ] (1.21)

and thus the redshift is linearly related to the distance d of the light source

z ' H0d . (1.22)

1This can be derived using the geodesic equation. The wavelength of a photon is inversely proportional to its
momentum λ = h/p. As we show in Sec. A.3, the momentum of the photon is inversely proportional to the scale factor
a and thus the wavelength scales as a(t).
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This approximation breaks down when the next-order term becomes of similar order of magnitude as
H0d or

ä

2a
d & H0 ⇒ d &

2H0
ä
a

(1.23)

In an era dominated by a cosmological constant (dark energy) with ρ = −P = ΩΛρcr = ΩΛ3H2
0m

2
P

this condition becomes

d &
2
√

ρΛ

3m2
P

ρΛ

3m2
P

=
2
√

3mP√
ΩΛρcr

=
2√

ΩΛH0
(1.24)

Thus the approximation breaks down for redshifts

z &
2√
ΩΛ
≈ 2.4 (1.25)

Note however that matter-dark energy equality is at z ' 0.7 and thus the above estimate is flawed and
requires more careful treatment beyond z ' 0.7. Similarly, for small velocities v � c, the standard
redshift formula can be used and we obtain z ' v/c and thus the (recessional) velocity v can be
expressed in terms of

v = H0D (1.26)

with the proper distance D = c(t1 − t0). This is denoted Hubble’s law (See Fig. 1). It is thus a direct
measure of the velocity of the galaxies.

1.3 Distances

There are two ways to measure distance, the comoving distance, χ, which remains fixed during ex-
pansion, and the physical distance, d = aχ, which takes the expansion into account. As we are in
an expanding space-time, we might wonder what is the more interesting physical distance: the dis-
tance at the time when the light was emitted or the distance when it was received. The well-defined
measure of distance is a comoving distance. On a comoving grid, the distance simply amounts to(
dx2 + dy2 + dz2

)1/2
. See Fig. 2 for an illustration.

1.3.1 Metric and comoving distance

Recall the form of the metric in terms of χ

ds2 = a(t)2
[
−dτ2 + dχ2 + S2

k(χ)dΩ2
]

(1.14)

where Sk(χ) is defined in Eq. (1.15). As light travels along null geodesics ds2 = 0, the change in
conformal time ∆τ equals the change in comoving distance ∆χ, i.e. ∆τ = ∆χ and thus the comoving
distance between an object at time t(a) and us is given by

χ(a) =

∫ t0

t(a)

dt′

a(t′)
=

∫ 1

a

da′

a′2H(a′)
. (1.27)

Note that neither the comoving distance χ nor the metric distance dm are observable.
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1.3.2 Angular diameter distance

A common method to determine the distance of an object of known size D is to measure the angle δθ
it takes on the sky as illustrated in Fig. 3a. Assuming that an object of known size D emits photons
at time t1 at comoving distance χ, then the angular diameter distance of the object is given by

dA ≡
D

δθ
(1.28)

with δθ � 1. In an FRW universe, the physical transverse size is given by

D = a(t1)Sk(χ)δθ (1.29)

and thus

dA =
dm

1 + z
. (1.30)

δθ

observer

source

D

t0

t1

(a) Angular diameter distance

observer

source

t0

t1

(b) Luminosity distance

Figure 3: Observable distances

1.3.3 Luminosity Distance

Another common way to infer the distance to an object of known luminosity is to compare the known
to the measured luminosity L, i.e. energy emitted per second. One example are Type IA supernovae
whose absolute luminosity is believed to be well understood. The observed flux F , energy per second
per area, can be used to determine the luminosity distance dL. The observed flux F at the luminosity
distance dL is given by

F =
L

4πd2
L

. (1.31)

Neglecting the expanding spacetime and any curvature, the luminosity distance would be simply given
by the comoving distance χ. In an FRW spacetime the luminosity distance dL the comoving distance
χ has to be replaced by the metric distance dm to account for possible curvature. Furthermore, at
early times, the photons travel further on the comoving grid compared to today. Thus the number of
photons received today is reduced by a factor a(t1) = 1/(1 + z). Finally, if the photons are redshifted
and thus the energy of the received photons is reduced by a factor a. Hence the measured flux using
a general FRW metric is given by

F =
L

4πd2
m(1 + z)2

. (1.32)

8



and a comparison with Eq. (1.31) shows that the luminosity distance is

dL ≡ dm(1 + z) . (1.33)

The luminosity distance is related to the angular diameter distance by

dA =
dL

(1 + z)2
. (1.34)

The distance measurements were crucial to show that the universe is accelerating today, which lead to
the award of the Nobel prize in physics for Saul Perlmutter, Brian Schmidt and Adam Riess in 2011.
See Fig. 4
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1.4 Horizons

The total comoving distance is given by the distance light could have travelled in a given time t, i.e.

η(t) =

∫ t

0

dt′

a(t′)
. (1.35)

As nothing travels faster than light, η(t) defines the particle horizon. We are not able to see anything
in the past, which is beyond the particle horizon. It is monotonically increasing and can also be used
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as a measure of time and is the conformal time defined in Eq. (1.12). The proper distance of the
particle horizon is given by

dmax(t) = a(t)

∫ t

0

dt′

a(t′)
. (1.36)

Similarly, there might be a horizon for future events, if the universe recollapses at time T . Then the
largest distance from which an observer might be able to receive signals travelling at the speed of light
at any time later than t, is given by ∫ T

t

dt′

a(t′)
(1.37)

in comoving coordinates, which is denoted event horizon. The proper distance for an infinite distant
future is given by

dMAX(t) = a(t)

∫ ∞
t

dt′

a(t′)
. (1.38)

2 Cosmological Evolution

2.1 Friedmann Equations

We model the different components in the universe by perfect fluids as a leading approximation which
are described by their energy density ρ and pressure P. The evolution of the scale factor a(t), energy
density ρ and pressure P of the different fluids can be described by the Friedmann equations

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− k

a2
(2.1)

ä

a
= −4πG

3
(ρ+ 3P) , (2.2)

which are the basic equations of FRW cosmology and follow directly from the Einstein equations. See
App. B.1 and App. B.2 for a derivation in case of a flat Universe.

2.2 Continuity Equation

The expansion of the Universe can be considered as an adiabatic process (no heat transfer) and thus
dS = 0 and the first law of thermodynamics is

dU = −PdV (2.3)

with the internal energy U , the pressure P and the volume V . The internal energy of the perfect fluid
is given by U = ρV and the volume scales like V = V0a

3 ∝ a3. Thus we can rewrite the first law of
thermodynamics as follows

0 = dU + PdV = d(ρV ) + PdV (2.4)

= (ρ+ P) dV + V dρ

= (ρ+ P)V0da
3 + V0a

3ρ̇dt

= (ρ+ P)V03a2ȧdt+ V0a
3ρ̇dt
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and we obtain the continuity equation2

ρ̇+ 3H (ρ+ P) = 0 (2.5)

Introducing the equation of state and the equation of state parameter w

P = wρ (2.6)

we can rewrite the continuity equation

0 =
∂ρ

∂t
+ 3(1 + w)

ȧ

a
ρ = a−3(1+w)∂

(
ρa3(1+w)

)
∂t

(2.7)

for constant equation of state parameter w and conclude ρ ∝ a−3(1+w). We can insert this result into
the Friedmann equation (k = 0) (

ȧ

a

)2

=
8πG

3
ρ . (2.8)

The solution gives us the time dependence of the scale factor for w 6= −1

a(t) ∝ t
2

3(1+w) H =
2

3(1 + w)t
(2.9)

and for ρ = Λ/8πG with w = −1, the scale factor is

a(t) ∝ e
√

Λ/3t H =

√
Λ

3
(2.10)

The second Friedmann equation determines whether the expansion is accelerating or decelerating

ä

a
= −4πG

3
(ρ+ 3P) = −(1 + 3w)

4πG

3
ρ (2.11)

and thus the expansion is accelerating for w < −1
3 and decelerating for w > −1

3 .

2.3 Cosmic Inventory

There are several different contributions to energy density of the Universe. Today, the most dominant
contribution is dark energy (or a cosmological constant) and matter as shown in Fig. 5a, while radiation
only contributes a small fraction. See Tab. 1 for a summary. The evolution of the three main
components, dark energy, matter and radiation is shown in Fig. 5b.

2.3.1 Matter

Matter refers to fluids with a negligible pressure, |P| � ρ, which is a good description for a gas of
non-relativistic particles. Thus setting w = 0, we obtain

ρ ∝ a−3 (2.12)

2The continuity equation is a direct result that the covariant divergence of the stress-energy tensor ∇µTµν vanishes.
See App. B.3 for a discussion.
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(a) Dominant contributions to the energy density
of the Universe.
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(b) Evolution of energy density for dark energy,
matter and radiation.

Figure 5: Energy density composition today and its evolution.

w ρ(a) a(t) H(t)

matter 0 a−3 t2/3 2
3t

radiation 1
3 a−4 t1/2 1

2t

cosm.const. −1 ρ0 e
√

Λ/3t
√

Λ/3

Table 1: Evolution of different fluids

reflecting the expansion of the volume V ∝ a3. Ordinary matter (nuclei and electrons) are commonly
called baryonic matter. Most of the matter in the Universe is in the form of dark matter, which is
a new form of matter, which does not interact with photons, or at least extremely weakly. However
its existence has been seen in numerous observations via its gravitational interactions at different
length scales: The virial theorem

(
1
2

〈
v2
〉

= GM
R

)
applied to COMA cluster (F.Zwicky 1933) shows

the existence of additional non-baryonic matter, similarly galactic rotation curves [O(10s)kpc], grav-
itational lensing [< O(200)kpc], in a comparison of the observation of the bullet cluster in X-ray and
gravitational lensing, the cosmic microwave background and large scale structure.

2.3.2 Radiation

The pressure of a relativistic gas of massless particles, for which the kinetic energy dominates the
energy density, is one third of its energy density, P = 1

3ρ and thus

ρ ∝ a−4 (2.13)

This can be easily understood by noticing that in addition to the decrease in the number density, the
energy is redshifted E ∝ 1/a.

The prime examples of radiation are
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• photons, which we detect today as cosmic microwave background with temperature T = 2.725
K and small perturbations of order 10−5.

• neutrinos in the early Universe. Today the masses of at least two neutrinos are relevant and
thus they behave like matter.

• gravitons. Similar to photons and neutrinos there might be a background of gravitons (i.e.
gravitational waves)

2.3.3 Dark energy

Matter and radiation are not enough to describe the evolution of the Universe. Recently dark energy
became the dominant source of energy density in the Universe and constitutes about 70% of the total
energy density today. The simplest explanation is in form of a cosmological constant with

ρ ∝ a0 (2.14)

implying negative pressure P = −ρ. A cosmological constant is predicted from quantum field theory.
The ground state energy leads to a stress-energy tensor

T vacµν = ρvacgµν . (2.15)

However the naive prediction overestimates its size by several orders of magnitude ρvac/ρobs ∼ 10120,
if a simple cutoff of the order of the Planck scale is imposed. Even though this naive estimate is
questionable, the ground state energy is expected to change during phase transitions and thus it is
an unsolved question why the cosmological constant is so small. Many alternatives to a cosmological
constant have been suggested to address the smallness. Most explanations involve scalar fields and
explain dark energy dynamically, but they generally do not address the problem of the vacuum energy.

2.4 Critical energy density

Sometimes it is convenient to express the energy density as a fraction of the critical energy density

ρcr =
3H2

8πG
= 3H2m2

P , (2.16)

where mP = (8πG)−1/2 ' 2× 1018 GeV is the reduced Planck mass. We define the fraction

ΩI =
ρI
ρcr

(2.17)

and can rewrite the first Friedmann equation as

1 = Ωr + Ωm + Ωk + ΩΛ . (2.18)

As the energy densities Ωr + Ωm + ΩΛ ≈ 1, we infer that Ωk ≈ 0 and the Universe can be considered
flat (k = 0). Alternatively we can express the first Friedmann equation in terms of the energy fractions
today

ΩI,0 =
ρI,0
ρcr,0

(2.19)

with the critical energy density today
ρcr,0 = 3H2

0m
2
P . (2.20)
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The first Friedmann equation becomes

H2(a) = H2
0

[
Ωr,0

(a0

a

)4
+ Ωm,0

(a0

a

)3
+ Ωk,0

(a0

a

)2
+ ΩΛ,0

]
(2.21)

with the Hubble parameter today H0 and the scale factor a0 today. In the following we will drop the
subscripts ’0’ and use the normalisation a0 = 1

H2

H2
0

= Ωra
−4 + Ωma

−3 + Ωka
−2 + ΩΛ . (2.22)

3 Thermal History

A basic understanding of the thermal history of the universe can be obtained by comparing the rate
of interactions Γ to the rate of expansion H, or equivalently to its associated timescales tc ≡ Γ−1 and
tH ≡ H−1. If the timescale for interactions is much smaller than the one for expansion

tc � tH ⇔ Γ� H (3.1)

then local thermal equilibrium is reached. As the universe cools down, the interaction rate will decrease
and when tc ∼ tH , particles decouple from the thermal bath. Different particles decouple at different
times. For example the interaction rate for 2→ 2 scattering is given by

Γ ≡ nσv (3.2)

with the number density n, the interaction cross section σ and the average velocity v. For ultra-
relativistic particles (v ∼ 1), the masses can be neglected and the only dimensionful quantity is the

temperature with n ∼ T 3 and σ ∼ α2

T 2 for some exchange interaction with coupling constant α. All
SM particles are ultra-relativistic for T & 100GeV. Hence the interaction rate is

Γ = nσv ∼ T 3 × α2

T 2
= α2T (3.3)

while the Hubble rate scales like

H ∼
√
ρ

mP
∼ T 2

mP
(3.4)

and thus the ratio
Γ

H
∼ α2mP

T
∼ 1014GeV

T
(3.5)

and thus for 100GeV . T . 1014GeV particles are in local thermal equilibrium for α ∼ 0.01.

3.1 Equilibrium Thermodynamics

In local thermal equilibrium we can use distribution functions f(~x, ~p), i.e. the occupation number of
a small cell d3xd3p/(2π~)3 at position (~x, ~p) to describe the fluids. In an homogeneous and isotropic
universe, the distribution function does not depend on the position ~x and the direction of the momen-
tum, but only the absolute magnitude of the momentum. The number density ni of species i with gi
internal degrees of freedom is given by

ni = gi

∫
d3p

(2π)3 f(p) . (3.6)
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Figure 6: Evolution of effective relativistic degrees of freedom. Solid line is for gρ∗(T ) and the dotted
line for gs∗(T ). Taken from Cosmology lecture notes of Daniel Baumann.

Bosons and fermions follow the usual Bose-Einstein and Fermi-Dirac distributions in equilibrium at a
temperature T respectively

f(p) =
1

e(E−µ)/T ± 1
(3.7)

with + for the Fermi-Dirac and − for the Bose-Einstein distribution. Similarly we can define the
energy density and the pressure

ρ = gi

∫
d3p

(2π)3 f(p)E(p)
T�m,µ−→

{
gi
π2

30T
4 bosons

7
8gi

π2

30T
4 fermions

(3.8)

P = gi

∫
d3p

(2π)3 f(p)
p2

3E(p)

T�m,µ−→ 1

3
ρ . (3.9)

See exercise 15 in chapter 2 of [1] to understand the form of the expressions for the energy density and
the pressure. The solutions to the exercise are provided in the appendix of [1]. The entropy density
is related to energy density and pressure as follows (App. B.4)

s(T ) =
∂P
∂T

s(T ) =
ρ(T ) + P(T )

T
. (3.10)

In the radiation dominated era, it is convenient to define the effective relativistic degrees of freedom
gρ,s∗ (T ) as follows

ρ =
π2

30
gρ∗(T )T 4 s =

2π2

45
gs∗(T )T 3 . (3.11)

Whenever particles decouple from the thermal plasma, gs,ρ∗ decreases. For most of the time, gρ∗(T ) =
gs∗(T ), as it is shown in Fig 6.

Real scalars have one degree of freedom, complex scalars two, massless gauge bosons two (polar-
izations), massive gauge bosons three (polarizations), Weyl fermions two, Majorana fermions two, and
Dirac fermions four (left- and right-handed and (anti-)particles).
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3.2 Relativistic Decoupling of Neutrinos

Neutrinos are almost massless fermions. They decouple from the cosmic plasma around 1 MeV and
thus shortly before electrons and positrons become non-relativistic and reheat the cosmic plasma. Thus
neutrinos are effectively colder than the cosmic plasma, since they are not reheated by electron-positron
pair annihilation. Using entropy conservation, we find for the entropy before neutrino decoupling at
scale factor a1

s(a1) =
2π2

45
T 3

1

[
2 +

7

8
(2 + 2 + 3 · 2)

]
=

43π2

90
T 3

1 , (3.12)

because there are in total 2 degrees of freedom from the two polarisations of photons, 2 spin degrees of
freedom for both electrons and positrons and 3 generations of neutrinos with spin 2. After electrons
and positrons become non-relativistic, they transfer their entropy to the cosmic plasma and effectively
reheat the cosmic plasma. Hence the entropy at a late-enough redshift a2 is given by

s(a2) =
2π2

45

[
2T 3

γ +
7

8
6T 3

ν

]
, (3.13)

where photons have a temperature Tγ and neutrinos have temperature Tν . Entropy conservation
s(a1)a3

1 = s(a2)a3
2 results in

43

2
(a1T1)3 = 4

[(
Tγ
Tν

)3

+
21

8

]
(Tν(a2)a2)3 . (3.14)

Finally we have to relate the temperature T1 to the temperature at a later time. After neutrinos
are decoupled, they still preserve the shape of the Fermi-Dirac distribution and the temperature is
inversely proportional to the scale factor. This can be directly seen from observing that the energy
of a massless particle scales like a−1 as shown in Eq. (A.28). Thus the temperature of neutrinos Tν
satisfies a2Tν = a1T1. Solving Eq. (3.14) for the temperature of neutrinos Tν , we obtain

Tν
Tγ

=

(
4

11

)1/3

(3.15)

and conclude that the temperature of neutrino background today is lower compared to the cosmic
microwave background. We find for the temperature of neutrinos today

T 0
ν = T 0

γ

(
4

11

)1/3

= 2.73

(
4

11

)1/3

K = 1.95K = 1.68× 10−4eV . (3.16)

It has been undeniably shown that neutrinos are massive. The temperature of neutrinos today T 0
ν is

smaller than the square root of the solar mass squared difference,
√

∆m2
� = 8.66× 10−3eV, and thus

at least two neutrinos are non-relativistic today and their mass can not be neglected. The energy
density of one neutrino is given by

ρ1ν = 2

∫
d3p

(2π)3

√
p2 +m2

ν

ep/Tν + 1
(3.17)

and shown in Fig. 7. Thus the total energy density in neutrinos is dominated by their mass ρν = mνnν

Ωνh
2 =

mν

94eV
. (3.18)
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Figure 7: Neutrino energy compared to photon energy vs temperature of neutrinos. Taken from
Dodelson[1]

4 The Boltzmann Equation for the Number Density

The Boltzmann equation for the number density n1 of the first particle in case of two to two scatterings,
1 + 2↔ 3 + 4 is given by

a−3d
(
n1a

3
)

dt
=

∫ 4∏
i=1

dΠi (2π)4δ(4)(p1 + p2 − p3 − p4) |M|2

× {f3f4 (1± f1) (1± f2)− f1f2 (1± f3) (1± f4)} (4.1)

with the phase space integrals ∫
dΠi = gi

∫
d3pi

(2π)32Ei(pi)
(4.2)

for particle i with gi internal degrees of freedom. See App. C for a derivation from the Boltzmann
equation for the number density. The phase space integral is Lorentz invariant∫

d3p

2E(p)
δ(E −

√
p2 +m2) =

∫
d3p

∫
dEδ(E2 − p2 −m2)θ(E) (4.3)

because we implicitly impose that the particle are on-shell, i.e. satisfy the energy-momentum disper-
sion relation

E2 = p2 +m2 (4.4)

Let us understand the different factors in the Boltzmann equation. In the absence of any in-
teractions, the right-hand side of the equation, the Boltzmann equation tells us that the number of
particles in a comoving volume does not change. However the number of particles in a physical volume
scales like a−3 due to the expansion. Interactions between the different particles are described by the
integral on the right-hand side. The integrals are over the whole phase space

∫
dΠi of the different par-

ticles involved in the interaction. Energy-momentum conservation is imposed by the four-dimensional
delta function. The factor |M|2 is the square of the amplitude (matrix element), which governs the
strength of the interaction. For example in the case of Compton scattering it is proportional to the
fine-structure constant α2. It is averaged over initial and final states. The last factor on the right-hand
side consists of two terms and takes into account the occupation numbers (distribution functions) of
the different states. The first term is proportional to f3f4(1±f1)(1±f2) and describes the production
of a particle 1 in the process 3 + 4 → 1 + 2, i.e. it is proportional to the initial abundances and the

17



factors (1 ± fi) take into account the possible Pauli-blocking for fermions with a minus sign or Bose
enhancement for bosons with a plus sign. The second term describes the destruction of particle 1 in
the process 1 + 2 → 3 + 4. The first term is sometimes called source term and the second loss term.
Note that we assumed that the process is reversible.

Usually scattering between the different particles enforces kinetic equilibrium, i.e. the different
particle species follow the Bose-Einstein or Fermi-Dirac statistics, however they are not necessarily in
chemical equilibrium. If they were the chemical potential µ would balance against the other chemical
potentials. In the case of e+ + e− ↔ γγ, we would find µe+ + µe− = 2µγ .

For systems at temperature T � E − µ we can neglect the terms ±1 in the denominators of the
Fermi-Dirac and Bose-Einstein distributions and work with the Maxwell-Boltzmann distribution

f(E) = e−(E−µ)/T = eµ/T e−E/T . (4.5)

Similarly we can neglect the Pauli-blocking/Bose enhancement factors and can approximate

{f3f4 (1± f1) (1± f2)− f1f2 (1± f3) (1± f4)}

→ fMB
3 fMB

4 − fMB
1 fMB

2 = e−(E1+E2)/T
(
e(µ3+µ4)/T − e(µ1+µ2)/T

)
(4.6)

using energy-momentum conservation. The number density

ni = n
(0)
i eµi/T (4.7)

of species i can be expressed as a function of µi and the equilibrium number density

n
(0)
i = gi

∫
d3p

(2π)3
e−Ei/T =

gi
(
miT
2π

)3/2
e−mi/T mi � T

giζ(3)T
3

π2 mi � T
. (4.8)

Using this we can rewrite Eq. (4.6)

e−(E1+E2)/T

{
n3n4

n
(0)
3 n

(0)
4

− n1n2

n
(0)
1 n

(0)
2

}
(4.9)

and consequently the Boltzmann equation

a−3d
(
n1a

3
)

dt
= n

(0)
1 n

(0)
2 〈σv〉

{
n3n4

n
(0)
3 n

(0)
4

− n1n2

n
(0)
1 n

(0)
2

}
(4.10)

where we defined the thermally averaged cross section

〈σv〉 =
1

n
(0)
1 n

(0)
2

4∏
i=1

∫
dΠie

−(E1+E2)/T (2π)4δ(4)(p1 + p2 − p3 − p4) |M|2 . (4.11)

Before moving on, a few comments are in order. Note that we could equally well use E3 + E4

and the equilibrium number densities of the particles 3 and 4. It is straightforward to generalise the
expression to other processes, like decays (1 → 2) processes or scattering with more than 2 particles
in the final state.
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The Boltzmann equation can be applied to many processes in the early Universe. We will discuss
big bang nucleosynthesis (BBN) and the freeze-out of a massive particle, which is relevant for dark
matter production, in detail and defer the study of recombination to the assignment.

If the interaction rate 〈σv〉n(0)
2 is large compared to the Hubble rate, the Boltzmann equation

(4.10) can only be satisfied if the number densities satisfy

n3n4

n
(0)
3 n

(0)
4

=
n1n2

n
(0)
1 n

(0)
2

(4.12)

and consequently the chemical potential are related by

µ3 + µ4 = µ1 + µ2 . (4.13)

This case is commonly denoted chemical equilibrium in the context of the production of heavy relics,
nuclear statistical equilibrium in the context of big bang nucleosynthesis, and Saha equation in the
context of recombination.

4.1 Freeze-Out

The prime example for freeze-out is dark matter production via freeze-out. We consider a massive
Dirac particle X with mass mX , which is initially in thermal equilibrium with the cosmic plasma, but
later freezes-out, i.e. decouples from the thermal SM plasma. Let us consider processes of the type
XX̄ ↔ ll̄, where the pair of particles XX̄ annihilate into a pair of light particles ll̄ and vice versa.
We assume that the light particle is in chemical as well as kinetic equilibrium with the cosmic plasma,

i.e. nl = n
(0)
l . Thus we find for the Boltzmann equation of nX = nX̄ (4.10)

a−3d
(
nXa

3
)

dt
= 〈σv〉

{(
n

(0)
X

)2
− n2

X

}
. (4.14)

We will assume that g∗ is constant, which is a good approximation for temperature well above the
QCD phase transition. We define

Y ≡ nX
s

and Y(0) ≡
n

(0)
X

s
(4.15)

to rewrite the differential equation for the number density in the convenient form

dY

dt
= s 〈σv〉

(
Y 2

(0) − Y
2
)
. (4.16)

The freeze-out process is characterised by the mass mX of the particle X. Thus it is convenient to
express the temperature in terms of mX as follows

x =
mX

T
. (4.17)

In the radiation dominated era, the first Friedmann equation can be written as

H(T ) =

(
1

2t

)
=

√
8πG

3

π2

30
gρ∗(T )T 2 =

√
8π3G

90
gρ∗(T )

m2
X

x2
=
H(mX)

x2
(4.18)
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and consequently the evolution equation can be rewritten as (assuming that gρ∗ is constant)

x

Y(0)

dY

dx
= − Γ

H

(
Y 2

Y 2
(0)

− 1

)
(4.19)

with the interaction rate Γ = n
(0)
X 〈σv〉.

There is no general analytic solution. However we can obtain an approximate analytic solution.
While Γ� H, the abundance Y of the particle X will track its equilibrium value Y(0)

Y0(x) =


45

2π4

√
π
8
g
gs∗
x3/2e−x x� 3

45ζ(3)
2π4

g
gs∗

x� 3 (bosons)
45ζ(3)

2π4
3
4
g
gs∗

x� 3 (fermions)

(4.20)

Note that the average momentum 〈p〉 /n ∼ 3T for Fermi-Dirac, Bose-Einstein and Maxwell-Boltzmann
distributions. When Γ ' H, the particle decouples from the thermal plasma. It freezes out. We
denote the freeze-out temperature by Tf or xf = mX/Tf . If the particle freezes out while still being
relativistic. Its final abundance is given by its equilibrium value at freeze-out

Y∞ = Y(0)(xf ) . (4.21)

Assuming the expansion is isentropic (constant entropy per comoving volume), its abundance today
is n0

X = s0Y∞. If it later becomes non-relativistic, its energy density is given by ρ0
X = s0Y∞mX . For

example for a single 2-component neutrino species we find

Ωνh
2 =

s0mν

ρcr

45ζ(3)

2π4

3

4

2

gs∗
h2 ' mν

94eV
(4.22)

If the particle however is already non-relativistic when decoupling, at late times for T � mX , i.e.
x � 1, we can obtain an approximate solution for late times when the equilibrium abundance is
exponentially suppressed. We parameterize the interaction rate by (A prime denotes a derivative with
respect to x)

Y ′ = −λx−n−2(Y 2 − Y 2
(0)) λ =

[
x 〈σv〉 s
H(mX)

]
x=1

(4.23)

where we parameterize the temperature dependence of the cross section by n:

〈σv〉 = 〈σv〉x=1 x
−n . (4.24)

The temperature dependence of the cross section comes from its velocity dependence σv ∝ vp, where
p = 0 corresponds to s-wave annihilation, p = 2 to p-wave annihilation and so on. Since 〈v〉 ∼ T 1/2,
we find 〈σv〉 ∝ T p/2. We introduce ∆ = Y − Y(0) and thus the Boltzmann equation becomes

∆′ = −Y ′(0) − λx
−n−2∆(2Y(0) + ∆) (4.25)

For 1 . x � xf , Y ∼ Y(0) and thus ∆, ∆′ are small. In fact ∆′ � ∆. We obtain the approximate
solution using Y ′(0) ' −Y(0) (The approximation for the derivative of the equilibrium number density

holds for x� 1.)

∆ ' xn+2

2λ
(4.26)
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Figure 8: Taken from Kolb/Turner[3].

and for x� xf , we expect ∆ ' Y � Y(0) and thus

∆′ = −λx−n−2∆2 (4.27)

which can be integrated from x = xf to infinity to obtain

Y∞ = ∆∞ =
n+ 1

λ
xn+1
f (4.28)

We finally have to determine the freeze-out temperature. A simple criterion is given by H(xf ) ' Γ(xf ),
which

H(mX) = x2
fΓ(xf ) = x2

f 〈σv〉n(0)(xf ) '
gXm

3
X 〈σv〉

(2π)3/2
x

1/2
f e−xf . (4.29)

See section 5.2 in Kolb/Tuerner for a more refined determination. Typical values for xf are a few
times 10. See Fig. 8. The final number density is then simply given by

nX,∞ = s0Y∞ (4.30)

of in terms of the energy density

ΩX =
n+ 1

λ
xn+1
f

mXs0

ρcr
≈ 0.2

xf
20

√
gρ∗(mX)

100

3× 10−26cm3/sec

〈σv〉
. (4.31)

This is a remarkable result, which nicely ties in with particle physics, because the cross section needed
to obtain the correct relic abundance for a particle X with masses of ∼ 100 GeV is of order of the
weak-interaction cross section G2

F . This coincidence is often called WIMP miracle, because a weakly
interacting massive particle (WIMP) automatically obtains the correct abundance via freeze-out to
explain dark matter. They naturally appear in many theories beyond the Standard Model (SM) of
particle physics, like the lightest supersymmetric particle (LSP) in the minimal supersymmetric SM.
There is a big experimental effort to search for these particles using all possible means: colliders, direct
and indirect detection experiments. All three possible channels are related via crossing symmetry with
the cross section relevant for dark matter pair annihilation in the early Universe, as it is shown in
Fig. 9. WIMPs are particularly constrained by direct detection searches as shown in Fig. 10.
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Figure 9: Crossing symmetry. Taken from http://www.mpi-hd.mpg.de/lin.
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Figure 10: Dark matter direct detection.[6]
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A Spacetime

A.1 Metric

In order to understand the Hubble diagram, we have to learn how to measure distances and length
scales in the Universe. Before looking at distances in space-time, let us first consider distances in
Euclidean space. In Euclidean space, the distance between two points is given by the distance in x
and y direction between the two points in Cartesian coordinates

ds2 = dx2 + dy2 (A.1)

where we used Cartesian coordinates to write the distance in the last term. However the result should
not depend on the chosen coordinate system. Thus choosing polar coordinates (r =

√
x2 + y2, θ) with

x = r sin θ y = r cos θ , (A.2)

we find for a distance between two points

ds2 = dr2 + r2dθ2 . (A.3)

In general we can write

ds2 =
∑
ij

gij(x)dxidxj , (A.4)

where g is a symmetric matrix, which is called metric. The metric defines a scalar product on the
vector space and consequently a norm, which can be used to define distances. In four space-time
dimensions, we conventionally write

ds2 =

3∑
µ,ν=0

gµν(x)dxµdxν = gµν(x)dxµdxν . (A.5)

The
∑

sign is often dropped and it is convention to sum over the same index, if it appears as lower
and upper index. ds2 is sometimes called proper time. The metric g has 10 degrees of freedom.

One special case is special relativity with the metric

(ηµν) =


−1

1
1

1

 . (A.6)

The signature of the metric is the number of eigenvalues ±1 of the metric. In case of special and
general relativity it is (3, 1) or (1, 3) depending on the convention whether the time component has
eigenvalue ±1. We will follow the convention in Dodelson [1]. Note, the lecture notes by Daniel
Baumann [2] use the signature (1, 3).

A.2 Geodesics

How does a particle move without any external forces? Newton’s law tells us

d2xi

dt2
= 0 . (A.7)
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How can we generalise this to a general coordinate system? For example for a system in polar coordinates, x′ = (r, θ),
the equations of motion look different. Starting from a Cartesian coordinate system, we find

dxi

dt
=

∂xi

∂x′j
dx′j

dt
. (A.8)

with the transformation matrix ∂xi/∂x′j . In case of polar coordinates

x1 = x′1 cosx′2 x2 = x′1 sinx′2 (A.9)

the transformation matrix is
∂xi

∂x′j
=

(
cosx′2 −x′1 sinx′2

sinx′2 x′1 cosx′2

)
. (A.10)

Applying the second derivative and doing the algebra we find

0 =
d2xi

dt2
=

d

dt

[
∂xi

∂x′j
dx′j

dt

]
=

∂xi

∂x′j
d2x′j

dt2
+

∂2xi

∂x′j∂x′k
dx′k

dt

dx′j

dt
(A.11)

multiplying with the inverse of the transformation matrix we obtain

d2x′l

dt2
+

([
∂x

∂x′

]−1
)l
i

∂2xi

∂x′j∂x′k
dx′k

dt

dx′j

dt
= 0 . (A.12)

Solutions to the this equation are called geodesics and the equation itself is commonly denoted geodesic equation. There
are two small changes in general relativity, the index runs from 0 to 3 and we can not use time t to parameterize the
path, but we have to use different monotonically increasing parameter along the geodesic. With these modifications we
can rewrite the geodesic equation as

d2xµ

dλ2
= −Γµαβ

dxα

dλ

dxβ

dλ
(A.13)

with the Christoffel symbol

Γµαβ =

([
∂x

∂x′

]−1
)µ
κ

∂2xκ

∂x′α∂x′β
(A.14)

Figure 11: Curve in space-time. Copied from [1]

In the absence of any (non-gravitational) forces, particles move along geodesics, the curve of least
action. This path is determined by the geodesic equation

dUµ

dλ
= −ΓµαβU

αUβ (A.15)

for a particle with mass m and velocity

Uµ =
dxµ

dλ
(A.16)

where λ can be in principle any parameter parameterising the curve. One convenient choice is the
proper time of the particle. In the following we will use λ = τ . The Christoffel symbol (for a metric-
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compatible connection) is defined as

Γµαβ =
gµν

2

[
∂gαν
∂xβ

+
∂gβν
∂xα

−
∂gαβ
∂xν

]
. (A.17)

In the general relativity course you will learn that you can rewrite the geodesic equation in a more
compact form using the covariant derivative ∇α

Uα
(
∂Uµ

∂Xα
+ ΓµαβU

β

)
≡ Uα∇αUµ = 0 (A.18)

where we made use of the chain rule

d

dτ
Uµ(Xα(τ)) =

dXα

dτ

∂Uµ

∂Xα
= Uα

∂Uµ

∂Xα
. (A.19)

In terms of the 4-momentum, Pµ ≡ mUµ = (E, ~P ), the geodesic equation becomes

Pα
∂Pµ

∂Xα
= −ΓµαβP

αP β (A.20)

which is also valid for a massless particle.

A.3 Point Particle in FRW Universe

The Christoffel symbol for a flat FRW metric has only a few non-vanishing components

Γ0
ij = ȧaγij Γi0j = Γij0 =

ȧ

a
δij (A.21)

Γijk = 0 for Euclidean space (k = 0) (A.22)

which can be easily derived using Eqs. (A.17) and (1.6) .
In an FRW universe, we have ∂iP

µ = 0 due to homogeneity and thus the geodesic equation reduces
to

P 0dP
µ

dt
= −ΓµαβP

αP β = −
(

2Γµ0jP
0 + ΓµijP

i
)
P j (A.23)

Thus we immediately see that particles at rest remain at rest

P j = 0⇒ dP j

dt
= 0 . (A.24)

Considering the zeroth component

E
dE

dt
= −Γ0

ijP
iP j = − ȧ

a
p2 (A.25)

using E = P 0 and the physical 3-momentum p2 = a2γijP
iP j .

Using the on-shell condition of the particle

−m2 = gµνP
µP ν = −E2 + p2 (A.26)

and thus EdE = pdp, the geodesic equation implies

ṗ

p
= − ȧ

a
⇒ p(t) ∝ 1

a(t)
. (A.27)
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Hence physical 3-momentum ”decays”. In particular for massless particles energy decays and physical
peculiar velocity v2 = a2γijv

ivj decay,

E = p ∝ 1

a(t)
(massless particles) (A.28)

p =
mv√
1− v2

∝ 1

a
(massive particles) , (A.29)

with the comoving peculiar velocity vi = dXi/dt (the velocity relative to the comoving frame). The
comoving peculiar velocity is related to the comoving momentum

P i = mU i = m
dXi

dτ
= mvi

dt

dτ
=

mvi√
1− a2γijvivj

=
mvi√
1− v2

(A.30)

with v2 ≡ a2γijv
ivj . The next-to-last equality follows from the relation of the τ on t can be obtained

from the metric

dτ2 = −ds2 = dt2 − a2γij
dxi

dt

dxj

dt
dt2 = dt2 − a2γijv

ivjdt2 = (1− v2)dt2 (A.31)

Thus free-falling particles will asymptotically approach the Hubble flow.

B Derivation of Friedmann Equations

B.1 Einstein Equation

The metric introduced in the previous sections describes gravity and the interaction of gravity with
matter is described by the Einstein equation3

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν (B.2)

with Newton’s constant G, the Einstein tensor Gµν , the Ricci tensor Rµν , the Ricci scalar R, and the
energy-momentum tensor Tµν . The Ricci tensor and Ricci scalar describe the curvature of space-time.
The Ricci scalar is simply defined by the contraction of the Ricci tensor with the metric

R = gµνRµν (B.3)

and the Ricci tensor can be obtained from the Christoffel symbols4

Rµν = ∂αΓαµν − ∂νΓαµα + ΓαβαΓβµν − ΓαβνΓβµα . (B.4)

3A possible cosmological constant Λ is absorbed in the energy-momentum tensor, i.e.

TΛ
µν =

Λ

8πG
gµν . (B.1)

4The curvature is defined similar to the field strength tensor in quantum field theory from the commutator of the
covariant derivatives [∇µ,∇ν ]. Please refer to a general relativity book.
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In particular looking at the 00 component of the Ricci tensor in an FRW metric we find

R00 = ∂αΓα00 − ∂0Γα0α + ΓαβαΓβ00 − Γαβ0Γβ0α (B.5)

= −∂0Γi0i − Γij0Γj0i (B.6)

= − ∂

∂t
δii
ȧ

a
−
(
ȧ

a

)2

δijδ
j
i = −3

ä

a
. (B.7)

Similarly for the spatial components (k = 0) we find

Rij = δij
(
2ȧ2 + aä

)
(B.8)

and the Ricci scalar can be evaluated to

R = gµνRµν = −R00 +
1

a2
Rii = 6

(
ä

a
+

(
ȧ

a

)2
)
. (B.9)

Plugging everything into Einstein equations we obtain two independent equations describing the
evolution in a flat (k = 0) FRW Universe

R00 −
1

2
g00R = 3

(
ȧ

a

)2

= 3H2 = 8πGT00 (B.10)

gµνGµν = −R = 8πGTµµ

B.2 Perfect Fluid

Before interpreting the Einstein equations, we have to have a closer look at the energy-momentum
tensor Tµν . Our basic assumption is that we can describe the content of the Universe by different
perfect fluids as a leading approximation, i.e. the fluid can be described by macroscopic quantities,
its energy density and pressure, while there is no stress or viscosity in agreement that with the metric
being homogeneous and isotropic.

The energy momentum tensor describes the flux of four-momentum pµ in the direction xν . The
energy-momentum tensor of a perfect fluid in its rest-frame in Minkowski space is given by

Tµν =


ρ
P
P
P

 (B.11)

Due to isotropy it is diagonal and its spatial components have to be equal. The 00-element is just the
energy density ρ, i.e. the flux of energy density in time direction, while the spatial elements ii are
given by the flux of momentum density pi in the direction xi, i.e. the pressure Pi = dpi

dt dxi in direction
xi. In order to write it in a covariant form, we first introduce the four-velocity

Uµ ≡ dxµ

dτ
(B.12)

with the proper time
dτ2 = −ηµνdxµdxν . (B.13)

For a particle at rest we find Uµ = (1, 0, 0, 0). Hence we can write the energy-momentum tensor as

Tµν = (ρ+ P)UµUν + Pηµν (B.14)

27



and its generalisation to general relativity is straightforward

Tµν = (ρ+ P)UµUν + Pgµν . (B.15)

Thus we find in the rest-frame of the fluid in the FRW universe

Tµν =


ρ

a−2P
a−2P

a−2P

 or Tµν =


−ρ

P
P
P

 . (B.16)

For example dust can be described by a perfect fluid with zero pressure, since it is not compressible.
Using our knowledge about the energy-momentum tensor of a perfect fluid, we see that

T00 = ρ Tµµ = −ρ+ 3P (B.17)

and we can rewrite Eqs. (B.10) to obtain the Friedmann equations

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ (B.18)

ä

a
= −4πG

3
(ρ+ 3P) , (B.19)

which are the basic equations of FRW cosmology.

B.3 Continuity Equation

How does the energy-momentum tensor of the perfect fluid evolve with time? In the absence of external
forces and gravity, we find that the energy density is constant ∂ρ/∂t = 0 and the Euler equation that
the pressure does not depend on the direction ∂P/∂xi. In covariant formulation, this amounts to

∂µT
µ
ν = 0 (B.20)

which some might have seen in the quantum field theory course. The generalisation to general relativity
is straightforward by understanding that we have to replace the partial derivative with a covariant
derivative to ensure that the continuity equation correctly transforms under a change of coordinates,
i.e.

0 = ∇µTµν = ∂µT
µ
ν + ΓµαµT

α
ν − ΓανµT

µ
α . (B.21)

For ν = 0 we obtain

0 = ∂µT
µ
0 + ΓµαµT

α
0 − Γα0µT

µ
α = −∂ρ

∂t
− Γi0iρ− Γi0iT

i
i (B.22)

and thus
∂ρ

∂t
+ 3

ȧ

a
[ρ+ P] = 0 . (B.23)
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B.4 Entropy conservation in thermal equilibrium

For negligible chemical potentials due to number changing processes of photons, e.g. e+e− → γγ, γγγ,
we can write the first law of thermodynamics as

d(ρ(T )V ) = Td(s(T )V )− P(T )dV (B.24)

which allows us to write the entropy density s(T ) as

s(T ) =
ρ(T ) + P(T )

T
(B.25)

by equating the coefficient in front of dV . Similarly it is straightforward to show

s(T ) =
∂P
∂T

(B.26)

using either one of the Maxwell relations or considering the coefficient in front of the differential V dT
in Eq. (B.24). The condition of thermal equilibrium tells us that the entropy in a comoving volume is
fixed, i.e.

s(T )a3 = constant . (B.27)

See Dodelson pg. 39/40 for a derivation using the continuity equation.

C The Boltzmann Equation

The Boltzmann equation (for the distribution function) is given by

df

dλ
= C ′[f ] (C.1)

with the distribution function f = f(~x, ~p, t). The left-hand side gives the change of the distribution
function with respect to the affine parameter λ, which we introduced previously and C ′[f ] is the
collision term taking into account any interactions.

We will use the momentum four-vector to define the affine parameter λ as in the section on the
geodesic equation. Thus we obtain

df

dt
=

1

E
C ′[f ] = C[f ] (C.2)

which is exactly Eq. (4.1) in Dodelson[1]. The Boltzmann equations generally connect the different
components of the Universe. Electrons and protons are coupled via the Coulomb interaction, photons
and electrons5 via Compton scattering. All particle species are coupled to the metric. See Fig. 12.

C.1 Derivation of the Boltzmann Equation for Number Density

In this section we derive the integrated form of the Boltzmann equation, in particular the Boltzmann
equation for the number density. We write the total derivative as the sum of the partial derivatives

df

dt
=
∂f

∂t
+
∂f

∂p

dp

dt
=
∂f

∂t
− pH ∂f

∂p
(C.3)

5Compton scattering between protons and photons is suppressed by the larger mass of a proton compared to an
electron.
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Figure 12: The network of Boltzmann and Einstein equations

using Eq. (A.27). Integrating this equation over the three-momentum we obtain

g

∫
d3p

(2π)3

df

dt
= g

∫
dp

(2π)3
4πp2

(
∂f

∂t
− pH ∂f

∂p

)
(C.4)

=
d

dt
g

∫
dp3

(2π)3

∂f

∂t
+ gH

∫
dp

(2π)3
4π23p2f (C.5)

=
dn

dt
+ 3Hn (C.6)

Thus the Boltzmann equation for the number density n1 of the first particle in case of 2→ 2 scatterings,
1 + 2↔ 3 + 4 is given by

a−3d
(
n1a

3
)

dt
=

∫ 4∏
i=1

dΠi (2π)4δ(4)(p1 + p2 − p3 − p4) |M|2

× {f3f4 (1± f1) (1± f2)− f1f2 (1± f3) (1± f4)} (C.7)

with the phase space integrals ∫
dΠi = gi

∫
d3pi

(2π)32Ei(pi)
(C.8)

for particle i with gi internal degrees of freedom.

C.2 Boltzmann equations for linear perturbations

In the following we give a brief outline how to study perturbations with the help of the Boltzmann
equation. See Chapter 4 in Dodelson[1] for more detail. We will assume that the perturbations are
small and expand all quantities to first order in the small perturbations.

C.2.1 Metric

As we want to study inhomogeneities and anisotropies, we also have to take a perturbation to the
metric into account. We will consider perturbations to the flat FRW metric and restrict ourselves
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to scalar perturbations and do not consider vector or tensor perturbations. The metric in conformal
Newtonian gauge is given by

ds2 = −(1 + 2Ψ(~x, t))dt2 + a2(t)(1 + 2Φ(~x, t))δijdx
idxj . (C.9)

Ψ is the Newtonian potential and Φ, the perturbation of the spatial curvature. See exercise 3 in
chapter 2 of Dodelson[1] to understand better the physical meaning of the two perturbations.

C.2.2 Collisionless Boltzmann Equation for Photons

Not all components of the four-momentum

Pµ ≡ dxµ

dλ
(C.10)

are independent. As photons are massless particles, we can use the dispersion relation

0 = gµνP
µP ν = −(1 + 2Ψ)

(
P 0
)2

+ p2 (C.11)

with
p2 = gijP

iP j = a2(1 + 2Φ)δijP
iP j (C.12)

to express the time-component of Pµ in terms of the spatial components

P 0 =
p√

1 + 2Ψ
=̇p(1−Ψ) (C.13)

to first order in Ψ. Note that an overdense region has Ψ < 0 and thus a photon moving out of the
potential well will lose energy, i.e. redshift. The independent parameters are thus the position xi, the
momentum p and the direction of the momentum p̂i satisfying p̂ip̂jδij = 1. The comoving momentum
P i = Cp̂i are proportional to the momentum direction p̂i. Using Eq. (C.12) we find

P i = pp̂i
1− Φ

a
. (C.14)

We write the total derivative as the sum of the partial derivatives

df

dt
=
∂f

∂t
+
∂f

∂xi
dxi

dt
+
∂f

∂p

dp

dt
. (C.15)

Note that we neglected the partial derivative with respect to p̂i, since it is second order in the small
perturbation. Now we have to reexpress the different terms. Using the chain rule we find for

dxi

dt
=
dxi

dλ

dλ

dt
=
P i

P 0
=̇
p̂i

a
(1− Φ + Ψ) (C.16)

to first order. The time derivative of the momentum can be obtained from the zeroth component of
the geodesic equation

dP 0

dλ
= −Γ0

αβP
αP β (C.17)

The left-hand side can be further evaluated to

dP 0

dλ
= p(1−Ψ)

d

dt
(p(1−Ψ)) = p(1−Ψ)

[
dp

dt
(1−Ψ)− pdΨ

dt

]
(C.18)

= p(1−Ψ)

[
dp

dt
(1−Ψ)− p

(
∂Ψ

∂t
+
p̂i

a

∂Ψ

∂xi

)]
=̇p(1− 2Ψ)

[
dp

dt
− p

(
∂Ψ

∂t
+
p̂i

a

∂Ψ

∂xi

)]
, (C.19)
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where we used Eq. (C.16). In order to evaluate the right-hand side, we have to evaluate the Christoffel
symbol first

Γ0
αβ

PαP β

p
=
g0ν

2

[
∂gνα
∂xβ

+
∂gνβ
∂xα

−
∂gαβ
∂xν

]
PαP β

p
=
g00

2

[
2
∂g0α

∂xβ
−
∂gαβ
∂t

]
PαP β

p
(C.20)

=
(−1 + 2Ψ)

2

{
∂g00

∂t

P 0P 0

p
+

[
2
∂g0i

∂xj
− ∂gij

∂t

]
P iP j

p
+ 2

∂g00

∂xi
P 0P i

p

}
(C.21)

=̇p (1− 2Ψ)

(
H +

∂Ψ

∂t
+ 2

p̂i

a

∂Ψ

∂xi
+
∂Φ

∂t

)
(C.22)

Combining everything we obtain

1

p

dp

dt
− ∂Ψ

∂t
− p̂i

a

∂Ψ

∂xi
= −H − ∂Ψ

∂t
− 2

p̂i

a

∂Ψ

∂xi
− ∂Φ

∂t
(C.23)

⇒ 1

p

dp

dt
= −H − ∂Φ

∂t
− p̂i

a

∂Ψ

∂xi
. (C.24)

This equation describes the change in photon momentum. An overdense region has Φ > 0 and Ψ < 0.
The first term accounts for the redshift due to the expansion, the second term states that a photon
loses energy in a deepening potential well and a photon moving into a potential well gains energy.

Finally we have to consider the distribution function. Photons are bosons and thus are described
by a Bose-Einstein distribution in equilibrium. We parameterize the perturbation as a change of the
variation of the temperature Θ(~x, p̂, t) = δT/T , i.e.

f(~x, p, p̂, t) =

[
exp

(
p

T (t)(1 + Θ(~x, p̂, t))

)
− 1

]−1

. (C.25)

Note that we assume that Θ does not depend on the magnitude of the photon momentum. This is a
good approximation for small-angle Compton scattering. Thus to leading order we find

f = f (0) +
∂f (0)

∂T
TΘ = f (0) − p∂f

(0)

∂p
Θ (C.26)

using that we can change the differentiation of the exponent from T to p.
After expanding each term in the small perturbations, we can now collect our results in Eqs.(C.15),

(C.16), (C.24), and (C.26) and are now able to study the collisionless Boltzmann equation. At zeroth
order we obtain

0 =
∂f (0)

∂t
−Hp∂f

(0)

∂p
=
∂f (0)

∂T

dT

dt
−Hp∂f

(0)

∂p
= −

(
dT/dt

T
+
da/dt

a

)
p
∂f (0)

∂p
(C.27)

and consequently we recover the well-known result aT = const.
At first order we evaluate each of the terms on the right-hand side of Eq. (C.15) separately. The

first term evaluates to

− p ∂
∂t

(
∂f (0)

∂p
Θ

)
= −p∂Θ

∂t

∂f (0)

∂p
− pΘdT

dt

∂2f (0)

∂T∂p
= −p∂Θ

∂t

∂f (0)

∂p
+
dT/dt

T
pΘ

∂

∂p

(
p
∂f (0)

∂p

)
, (C.28)

the second term only consists of one term

− p∂f
(0)

∂p

∂Θ

∂xi
p̂i

a
(C.29)
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and the third term

HpΘ
∂

∂p

(
p
∂f (0)

∂p

)
− ∂f (0)

∂p
p

(
∂Φ

∂t
+
p̂i

a

∂Ψ

∂xi

)
(C.30)

partly cancels the first term using the zeroth order equation. Thus we obtain

df

dt

∣∣∣∣
first order

= −p∂f
(0)

∂p

[
∂Θ

∂t
+
p̂i

a

∂Θ

∂xi
+
∂Φ

∂t
+
p̂i

a

∂Ψ

∂xi

]
. (C.31)

The last two account for the effect of gravity, while the first two are entirely due to the change in
the distribution function. It is useful to go to Fourier space for the spatial coordinates and to use
conformal time η. Defining

Θ(~x) =

∫
d3k

(2π)3
ei
~k·~xΘ̃(~k) (C.32)

and using a dot to indicate a derivative with respect to conformal time (Θ̇ = dΘ/dη) we obtain

df

dt

∣∣∣∣
first order

= −p
a

∂f (0)

∂p

[
˙̃Θ + ikµΘ̃ + ˙̃Φ + ikµΨ̃

]
(C.33)

with kµ ≡ p̂ · ~k.

C.2.3 Collision Terms: Compton Scattering

Photons are interacting with electrons via Compton scattering

e−(q) + γ(p)↔ e−(q′) + γ(p′) . (C.34)

The collision term for Compton scattering is given by

C[f(~p)] =
1

p

∫
dΠqdΠq′dΠp′ |M|2 (2π)4 δ(4)(p+ q − p′ − q′)

(
fe(~q

′)f(~p′)− fe(~q)f(~p)
)
. (C.35)

The integral over d3q′ is trivially evaluated using the delta function over the three-momenta. We want
to evaluate the collision term in the limit of non-relativistic electrons, i.e. E(~q) = me + q2/2me and
consequently also photons with small momenta |p| ∼ T � me. Thus the energy transfer is

Ee(~q)− Ee(~q + ~p− ~p′) ' (~p′ − ~p) · ~q
me

, (C.36)

where we used that the momentum of the photons is much smaller than the one of the electrons,
|p|, |p′| � |q|. As the electrons are non-relativistic, their velocity q/me ∼ vb � 1 is small and similar
to the baryon velocity vb. Thus the energy transfer is of order of Tq/me ∼ Tvb. We can thus expand
the energy delta function around zero energy transfer

δ(p+
q2

2me
− p′ − (~q + ~p− ~p′)2

2me
) ' δ(p− p′) +

(~p− ~p′) · ~q
me

∂δ(p− p′)
∂p′

. (C.37)

Similarly we can make the approximation that the momentum distribution of the electrons does not
change, i.e. fe(~q + ~p− ~p′) ' fe(~q). Thus the collision term reads

C[f(~p)] =
π

4m2
ep

∫
d3q

(2π)3
fe(~q)

∫
d3p′

(2π)3p′
|M|2

(
δ(p− p′) +

(~p− ~p′) · ~q
me

∂δ(p− p′)
∂p′

)(
f(~p′)− f(~p)

)
(C.38)
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Following Dodelson, we will neglect the polarisation of the photons and average over it for simplicity of
the discussion. A proper treatment should include the polarisation. The matrix element for Compton
scattering after summing over the polarisation of the incoming and outgoing photons is given by

|M|2 = 4πσTm
2
e

(
2 + P2(p̂ · p̂′)

)
= 4πσTm

2
e

(
2 +

4π

5

2∑
m=−2

Y2m(p̂)Y ∗2m(p̂′)

)
(C.39)

with the second Legendre polynomial 2P2(x) = 3x2 − 1 and the corresponding spherical harmonics
Ylm. Note that the integral over the azimuthal angle ϕ vanishes for Ylm(p̂′) ∝ eimϕ for m 6= 0. Thus
we find using Y20(p̂) =

√
5/4πP2(p̂ · k̂) for some fixed k̂

|M|2 = 4πσTm
2
e

(
2 + P2(µ)P2(µ′)

)
(C.40)

with µ′ = p̂′ · k̂ The q-integration yields the number density ne and the velocity ne~vb in case of the
factor ~q. We expand the distribution functions (C.26)

f(p′)− f(p) = f (0)(p′)− f (0)(p)− p′∂f
(0)(p′)

∂p′
Θ(p̂′) + p

∂f (0)(p)

∂p
Θ(p̂) . (C.41)

It is easy to see that the zeroth order term vanishes, because the product of the delta-function with the
difference of the equilibrium distributions vanishes, when integrated over p′. The leading non-vanishing
term is given by the sum of the terms proportional to vb and Θ, which we evaluate separately. Using
spherical coordinates for the p′ integral we obtain

CΘ[f(~p)] =
σTne
8πp

∫
dΩ′

(
2 + P2(µ)P2(µ′)

) ∫
p′dp′δ(p− p′)

(
−p′∂f

(0)(p′)

∂p′
Θ(p̂′) + p

∂f (0)(p)

∂p
Θ(p̂)

)
(C.42)

. (C.43)

The momentum integral of CΘ can be directly evaluated with the delta function and we obtain

CΘ[f(~p)] = σTnep
∂f (0)(p)

∂p

(
Θ(p̂)−Θ0 +

1

2
P2(µ)Θ2

)
, (C.44)

where we defined the moments

Θl ≡
1

(−i)l

∫ 1

−1

dµ′

2
Pl(µ

′)Θ(µ′) . (C.45)

The second term Cvb

Cvb [f(~p)] =
σTne
8πp

∫
dΩ′

(
2 + P2(µ)P2(µ′)

) ∫
p′dp′(~p− ~p′) · ~vb

∂δ(p− p′)
∂p′

(
f (0)(p′)− f (0)(p)

)
(C.46)

can be similarly evaluated by first noticing that the angular integral over P2(µ′)~p′ · ~vb is odd and
vanishes and by using partial integration to remove the derivative from the delta function

Cvb [f(~p)] = −σTne
8πp

∫
dΩ′

(
2 + P2(µ)P2(µ′)

) ∫
dp′δ(p− p′) ∂

∂p′

[
p′~p · ~vb

(
f (0)(p′)− f (0)(p)

)]
(C.47)

= −σTne
8πp

∫
dΩ′

(
2 + P2(µ)P2(µ′)

) ∫
dp′δ(p− p′)

[
p′~p · ~vb

∂f (0)(p′)

∂p′

]
(C.48)

= −σTnep
∂f (0)(p)

∂p
p̂ · ~vb . (C.49)
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Collecting both term, we obtain for the collision term

C[f(~p)] = σTnep
∂f (0)(p)

∂p

[
Θ(p̂)−Θ0 +

1

2
P2(µ)Θ2 − p̂ · ~vb

]
. (C.50)

Finally we take the Fourier transform of the collision term. Typically we will assume that the velocity
points in the same direction as ~k, i.e. so the Fourier transform of p̂ ·~vb becomes ṽbµ. Hence the Fourier
transform (of the spatial directions) is given by

C[f(~p)] = σTnep
∂f (0)(p)

∂p

[
Θ̃(p̂)− Θ̃0 +

1

2
P2(µ)Θ̃2 − ṽbµ

]
(C.51)

C.2.4 Boltzmann Equation for Photons

Combining the result for the collisionless Boltzmann equation (C.33) with the collision term (C.51),
we obtain the Boltzmann equation for photons coupled to non-relativistic electrons

˙̃Θ + ikµΘ̃ + ˙̃Φ + ikµΨ̃ = σTnea

[
Θ̃0 +

1

2
P2(µ)Θ̃2 + ṽbµ− Θ̃

]
. (C.52)

Note that the different Fourier modes do not mix and thus evolve independently. This only holds in the
linear regime. If the perturbations can be large, as it is the case for matter, the linear approximation
breaks down and different Fourier modes will couple. Finally we use the optical depth

τ(η) ≡
∫ η0

η
dη′neσTa , (C.53)

which characterises how much light is absorbed by the electrons, i.e. the intensity I(η0) today com-
pared to the intensity at η ,

I(η0) = I(η)e−τ (C.54)

to write the Boltzmann equation describing photons

˙̃Θ + ikµΘ̃ + ˙̃Φ + ikµΨ̃ = −τ̇
[
Θ̃0 +

1

2
P2(µ)Θ̃2 + ṽbµ− Θ̃

]
. (C.55)
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