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The first part of the lecture will follow Dodelson, Modern Cosmology [1] very closely. Throughout

the notes, we will use natural units:

h=c=kp=1.



1 The Basic Ingredients of the Universe

See also Dodelson, Modern Cosmology [1], chapter 2 and Kolb/Turner, The Early Universe [2], chapter
1-3.

Hubble discovered in 1929[3] that distant galaxies are moving away from us. His observation is
shown in Fig. [l From this diagram, we can extract the slope, called Hubble rate Hy, today,
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Figure 1: Hubble diagram: velocity — distance relation among extra-galactic nebulae. The velocity
is in kmsec™! and the distance in Mpc.

Hy = 100 hkmsec™! Mpc™! . (1.1)

The Planck satellite mission measured Hy = (67.1 4 1.2) kmsec™! Mpc™! [4].

1.1 Metric

In order to understand the Hubble diagram, we have to learn how to measure distances and length
scales in the Universe. Before looking at distances in space-time, let us first consider distances in
Euclidean space. In Euclidean space, the distance between two points is given by the distance in x
and y direction between the two points in Cartesian coordinates

ds? = dz* + dy? (1.2)

where we used Cartesian coordinates to write the distance in the last term. However the result should
not depend on the chosen coordinate system. Thus choosing polar coordinates (r = \/x2 + y2, §) with

x =rsinf y=rcosf, (1.3)
we find for a distance between two points
ds* = dr® + r?dh* . (1.4)

In general we can write
ds® = Zgijdazzdx] , (1.5)
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where ¢ is a symmetric matrix, which is called metric. The metric defines a scalar product on the
vector space and consequently a norm, which can be used to define distances. In four space-time
dimensions, we conventionally write

3
ds® = Z gudzrtdz” = g, dxtdx” . (1.6)
w,v=0

The > sign is often dropped and it is convention to sum over the same index, if it appears as lower
and upper index. ds? is sometimes called proper time. The metric g has 10 degrees of freedom.
One special case is special relativity with the metric

—1

Ny = 1 . (1.7)
1

The signature of the metric is the number of eigenvalues +1 of the metric. In case of special and
general relativity it is (3,1) or (1,3) depending on the convention whether the time component has
eigenvalue +1.

At large scales, the Universe appears homogeneous and isotropic. In addition, we find that the is
flat. The space-time is described by the Friedmann-Robertson-Walker (FRW) metric

-1
_ a(t)?
g,ul/ - a(t)2 (18)
a(t)?
if the Universe is flat, or more generally by
2 2 2 dr? 2 (702 1 ain2 2
ds” = —dt* + a(t) e (d6* + sin® 0d¢?) (1.9)
—kr

for a general homogeneous and isotropic metric, where k = 0 for a flat Universe, k = 1 for a closed
Universe, k = —1 for an open Universe. We will be mainly looking at a flat Universe with £ = 0. See
the assignment for the derivation of this metric. The parameter a is called scale factor and describes
how the Universe expands. See Fig.
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Figure 2: Expansion in an FRW Universe. Copied from [I]



1.2 Geodesics

How does a particle move without any external forces? Newton’s law tells us
d’at
dt?

How can we generalise this to a general coordinate system? For example for a system in polar

=0. (1.10)
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Figure 3: Curve in space-time. Copied from [I]

coordinates, 2’ = (r,0), the equations of motion look different. Starting from a Cartesian coordinate

system, we find ' ' '
de*  Ox' da”

= - 1.11
dt oz’ dt ( )
with the transformation matriz 92'/0x"7. In case of polar coordinates
zt = 2/t cos 2 2% = 2l sin 2 (1.12)
the transformation matrix is A ) ) )
oz’ cosx™® —z'tsina’
oxli <sinaz’2 2! cos ' > (1.13)
Applying the second derivative and doing the algebra we find
_ d*z' d [0a' da]  Oa" dPal N 0?2t da'* dall (1.14)
Cdt2 dt |0z dt | O0x dt? 020’ dt  dt '

multiplying with the inverse of the transformation matrix we obtain

l . .
d2 11 -1 2,0 d lkd 15
ey s 0w deTded (1.15)
dt? ox’ 029k dt  dt

Solutions to the this equation are called geodesics and the equation itself is commonly denoted by
geodesic equation. There are two small changes in general relativity, the index runs from 0 to 3 and
we can not use time ¢ to parameterize the path, but we have to use different monotonically increasing
parameter along the geodesic. With these modifications we can rewrite the geodesic equation as

d%zH dx® dz
—— =Tt = — 1.16
d\? B g\ d\ ( )
with the Christoffel symbol
ax 1\ 9%
. === _— 1.17
B <[8x’] > Ox'*0x'8 (1.17)
A more convenient form of the Christoffel symbol is in terms of the metric tensor
" 19y 998y 0gap
= | Zer _ B\ 1.18
ad 2 { dzh oz Oa (1.18)



1.3 Point Particle in FRW Universe

Let us study a massless point particle in an FRW Universe.

The energy-momentum four-vector P = (E, ]3) of point particle can be used to define the parameter

A by
B dz®

P =—. 1.19
N (1.19)
Looking at the 0-component we can reexpress the derivative
d dz® d d
- _Fp—. 1.20
d\  d\ da0 dt ( )
The Christoffel symbol for a FRW metric has only a few non-vanishing components:
IV =640 P A (1.21)
(/Y 0j — *+40 — by .

which can be easily derived using Egs. (1.18)) and (1.9) for £ = 0. Hence the zeroth component of the
geodesic equation is given by

d? 0 d da® dE

D= vy~ P = Outal' P (1.22)
Using the on-shell condition of the particle
0= g, P"P" = —FE* 4 §;ja*P' P’ (1.23)
we find that the geodesic equation implies
dE & 1
—+ -k = Ex-—. 1.24
7 + . 0 = o — ( )

1.4 Redshift

Galaxies further away are moving away from us. Hence the light we observe is red-shifted compared

to the emitted light. We can define

Aos 1
C—— (1.25)

Aemit a

1+2=

For small velocities v < ¢, the standard redshift formula can be used and we obtain z ~ v/c. It is
thus a direct measure of the velocity of the galaxies.

1.5 Distances

There are two ways to measure distance, the comoving distance, y, which remains fixed during ex-
pansion, and the physical distance, d = a), which takes the expansion into account. As we are in
an expanding space-time, we might wonder what is the more interesting physical distance: the dis-
tance at the time when the light was emitted or the distance when it was received. The well-defined
measure of distance is a comoving distance. On a comoving grid, the distance simply amounts to

(d:vz +dy? + dz2)1/2. See Fig. [2| for an illustration.



1.5.1 Comoving distances

In any given time dt, light travels a comoving distance dz = dt/a.
The total comoving distance is given by the distance light could have travelled in a given time ¢,

n(t) =/0 ac(li:) : (1.26)

As nothing travels faster than light, n(¢) defines the particle horizon. We are not able to see anything
in the past, which is beyond the particle horizon. It is monotonically increasing and can also be used
as a measure of time, the so-called conformal time. The proper distance of the particle horizon is
given by

t dt/
dnas(t) = at) [ 5 (1.27)
Similarly, there might be a horizon for future events, if the universe recollapses at time 7. Then the
largest distance from which an observer might be able to receive signals travelling at the speed of light

at any time later than ¢, is given by
T dt/
/ (1.28)
¢ a(t)

in comoving coordinates, which is denoted event horizon. The proper distance for an infinite distant
future is given by

dax(t) =ao) [~ (1.29)

t

Generally we can define the comoving distance of an object at time ¢(a) to today

to dt/ 1 dal
_ — - 1.
x(@) /t(a) a(t') /a a?H(a') (1:30)
with the Hubble rate
H

Il
SEY

(1.31)

1.5.2 Angular diameter distance
A common method to determine the distance of an object of known size [ is to measure the angle 0 it
takes on the sky. Then the angular diameter distance of the object is given by

dy =~ (1.32)

In an expanding Universe, we have to take the expansion into account. The comoving size of the
object is given by [/a and its angle in the sky 6§ = (I/a)/x(a). Thus we can reexpress the angular
diameter distance in a flat FRW space-time as

dhlet — - X 1.33
= axta) = T2 (1.33)
Similar expressions can be derived for an open (k = —1) or closed (k = 1) space-time.



1.5.3 Luminosity Distance

Another common way to infer the distance to an object of known luminosity is to compare the known
to the measured luminosity L. Neglecting the expanding space-time, the observed flux F' at a distance

d is given by
L

F=—. 1.34
Ad? (1.34)
Generalising the expression to comoving coordinates, we find
L
po 0 (1.35)
dmx?(a)

At early times, the photons travel further on the comoving grid, then at later times. Hence we find
due to the expansion the number of photons crossing a shell at distance x is less by a factor a. If the
photons are all emitted with the same energy, then the luminosity which we observe today is smaller
by a factor a?, because the photons are red-shifted in addition.

La?

F=—"7F—. 1.36

@ (139

A comparison with Eq. (1.34) shows that the apparent distance is defined by the luminosity distance
X

dr, == . 1.37

L= (1.37)

1.6 Covariant Derivative

Before continuing let us introduce one more concept. The four-vector along the path of a massive
particle % is a tangent vector at any given point along the path. We already saw how a tangent

vector transforms under a general coordinate transformation in Eq. (L.11]) using the chain rule

dx? oz \* dz'v
dA:<MJVM' (1.38)

F . . . . .
How does aﬂ% transform under a general coordinate transformation? It is not invariant, because 0,

also acts on (%). In order to obtain an invariant quantity, we have to define the covariant derivative

of an arbitrary vector V¥ in the tangent space

Vu VY =0, VY + T,V (1.39)
The expression in Eq. (1.18]) is a result of requiring that the covariant derivative (connection) is metric
compatible V,g,,, = 0.
1.7 Einstein Equations

The metric introduced in the previous sections describes gravity and the interaction of gravity with
matter is described by Einstein equatio

1
Guw = Ry — igw,R =8rGT,, (1.41)
LA possible cosmological constant A is absorbed in the energy-momentum tensor, i.e.
A
A
T = eI - (1.40)



with Newton’s constant G, the Einstein tensor G, the Ricci tensor Ry, the Ricci scalar R, and the
energy-momentum tensor 7,,,. The Ricci tensor and Ricci scalar describe the curvature of space-time.
The Ricci scalar is simply defined by the contraction of the Ricci tensor with the metric

R = g" R,, (1.42)
and the Ricci tensor can be obtained from the Christoffel symbolsﬂ
Ry = 0,18, — 0,10, + 14,0, — T¢I . (1.43)

In particular looking at the 00 component of the Ricci tensor in an FRW metric we find

Roo = 9,y — 905, + T3, Ty — D% L0, (1.44)
= 9oy, — r;lor{)i (1.45)
0. a a\? i

Similarly for the spatial components we find
R = 6;; (24* + ad) (1.47)

and the Ricci scalar can be evaluated to

1 . N2
R = g’“’RW, = —Rgo + ?Rii =6 <Z + <Z> ) . (1.48)

Plugging everything into Einstein equations we obtain two independent equations

1 LN\ 2
Ro() — §g00'R =3 (Z) = 87TGT00 (1.49)

9" Gy = —R = 87GT!

1.8 Perfect Fluid

Before interpreting the Einstein equations, we have to have a closer look at the energy-momentum
tensor T*¥. Our basic assumption is that we can describe the content of the Universe by different
perfect fluids as a leading approximation, i.e. the fluid can be described by macroscopic quantities,
its energy density and pressure, while there is no stress or viscosity in agreement that with the metric
being homogeneous and isotropic.

The energy momentum tensor describes the flux of four-momentum p* in the direction z”. The
energy-momentum tensor of a perfect fluid in its rest-frame in Minkowski space is given by

p
P
m
T P (1.50)
P

2The curvature is defined similar to the field strength tensor in quantum field theory from the commutator of the
covariant derivatives [V, V,]. Please refer to a general relativity book.



Due to isotropy it is diagonal and its spatial components have to be equal. The 00-element is just the
energy density p, i.e. the flux of energy in time direction, while the spatial elements i are given by
the flux of momentum density p; in the direction x;, i.e. the pressure P; = CZ’; dz; in direction x;. In

order to write it in a covariant form, we first introduce the four-velocity

dat
Ut = ;7 (1.51)
with the proper time
dr? = —ndztds” . (1.52)

For a particle at rest we find U* = (1,0,0,0). Hence we can write the energy-momentum tensor as
T = (p+P)UFUY + Pt (1.53)
and its generalisation to general relativity is straightforward
T = (p+P)UFU" + Pgh . (1.54)

Thus we find in the rest-frame of the fluid

or TV = . (1.55)

For example dust can be described by a perfect fluid with zero pressure, since it is not compressible.

1.9 Friedmann Equations

Using our knowledge about the energy-momentum tensor of a perfect fluid, we see that
TOO =p T[j =—p+ 3P (156)

and we can rewrite Egs. (1.49)) to obtain the Friedmann equations

N
2 _ (a\" _ &G
H® = (a) =3P (1.57)
a e
2= "3 (p+3P) . (1.58)

1.10 Continuity Equation

How does the energy-momentum tensor of the perfect fluid evolve with time? In the absence of external
forces and gravity, we find that the energy density is constant dp/dt = 0 and the Euler equation that
the pressure does not depend on the direction 9P /0z'. In covariant formulation, this amounts to

8, TH =0 (1.59)

which some might have seen in the quantum field theory course. The generalisation to general relativity
is straightforward by understanding that we have to replace the partial derivative with a covariant



matter 0 a3 t2/3 %
radiation % a? t1/2 %
cosm.const. —1 pg eVA/3 A/3

Table 1: Evolution of different fluids

derivative to ensure that the continuity equation correctly transforms under a change of coordinates,
ie.

0=V, 1) =0,T) + 'y, 1) — 1, 1% . (1.60)
For v = 0 we obtain
0= 0,1 +Th T — TG, T (1.61)
dp . o
o 0ip — Lo 17 (1.62)
and thus P .
a—f+3g[p+7?]:0. (1.63)

Introducing the equation of state
P =wp (1.64)

we can rewrite the continuity equation for v =0

8,0 a -3
_ YV 1 wo_ (14w)
0= ; +3(l+w)-p=a

) (pa3(1+w))

5 (1.65)

for constant equation of state parameter w and conclude p < a=30+%) We can insert this result into
the Friedmann equation

-\ 2
(Z) = %p . (1.66)
The solution gives us the time dependence of the scale factor for w # —1
2 2
a(t) oc t30+w) H = 301w (1.67)

Matter has w = 0 and thus p o a3, a(t) o t*/3 and H = 2/3t, radiation on the other hand has
w = 1/3 and thus p o a=%, a(t) o< t'/2 and H = 1/2t. For a cosmological constant with w = —1, the
Friedmann equation is particularly simple

a_ A (1.68)

and thus a o< eV2/3t. See Tab. m
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2 Thermodynamics of the Early Universe

2.1 Equilibrium Thermodynamics

Usually interaction in the Early Universe happen quickly enough to keep the particles in local thermal
equilibrium and different fluids share the same temperature. It is convenient to use distribution
functions f(¥,p), i.e. the occupation number of a small cell d3xd3p/(27h)? at position (7,p) to
describe the fluid. The number density n; of species ¢ with g; internal degrees of freedom is given by

[ &P,
ni—gz/(27r)3f(xaﬁ)' (2'1)

Bosons and fermions follow the usual Bose-Einstein and Fermi-Dirac distributions in equilibrium at a

temperature 1" respectively
R 1
f(%ﬁ) - e(E_M)/T j: 1
with + for the Fermi-Dirac and — for the Bose-Einstein distribution. Similarly we can define the
energy density and the pressure (See prob. 15 in chapter 2 of [I])

(2.2)

dp T>m | i 274 hosons
p=g [ S p@HEE =0, (23)
(2m) §9i55 7"  fermions
dgp p2 T>m 1
P = i "7 == —n. 24
s [ o E PG 2 5 (2.4)

See exercise 15 in chapter 2 of [I] to understand the form of the expressions for the energy density
and the pressure. The solutions to the exercise are provided in the appendix of [I]. For negligible

chemical potentials
d(p(T)V)=Td(s(T)V) —P(T)dV (2.5)

allows us to write the entropy density s(7") as

T T
T
by equating the coefficient in front of dV. Similarly it is straightforward to show
oP
T) = — 2.7
S(1) = o (2.7)

using either one of the Maxwell relations or considering the coefficient in front of the differential VdT'
in Eq. (2.5). The condition of thermal equilibrium tells us that the entropy in a comoving volume is
fixed, i.e.

s(T)a® = constant . (2.8)

See Dodelson pg. 39/40 for a derivation using the continuity equation.
In the radiation dominated era, it is convenient to define the effective relativistic degrees of freedom
g% (T) as follows

2 oI
p= gl (T)T* s = Egi(T)T?’ : (2.9)

11
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Figure 4: Evolution of effective relativistic degrees of freedom. Solid line is for ¢gf(T") and the dotted
line for g$(T). Taken from Cosmology lecture notes of Daniel Baumann.

For most of the time, ¢f(T') = g5(T), as it is shown in Fig

See the accompanying slides for a discussion of the different components making up the energy
budget in the Universe: dark energy, photons, neutrinos, baryons and dark matter. Most of the
discussion is straightforward. For completeness however I would like to repeat the discussion about
the temperature of neutrinos today. Neutrinos are almost massless fermions. They decouple from the
cosmic plasma around 1 MeV and thus shortly before electrons and positrons become non-relativistic
and reheat the cosmic plasma. Thus neutrinos are effectively colder than the cosmic plasma, since
they are not reheated by electron-positron pair annihilation. Using entropy conservation, we find for
the entropy before neutrino decoupling at scale factor a;

2?4 7 4372
=T} 24+-(2+2+3-2)| = —T} 2.10
() = 21 24 {24 243.2)] = B, (2.10)
because there are in total 2 degrees of freedom from the two polarisations of photons, 2 spin degrees of
freedom for both electrons and positrons and 3 generations of neutrinos with spin 2. After electrons
and positrons become non-relativistic, they transfer their entropy to the cosmic plasma and effectively
reheat the cosmic plasma. Hence the entropy at a late-enough redshift as is given by
272 7

s(az) =~ [2T§’ + 86T3] : (2.11)

where photons have a temperature T, and neutrinos have temperature 7). Entropy conservation
s(a1)a? = s(az)a3 results in
3
AN
T, 8

Finally we have to relate the temperature T to the temperature at a later time. After neutrinos
are decoupled, they still preserve the shape of the Fermi-Dirac distribution and the temperature is

43

- (@T1)’ =4 (Ty(az)az)” . (2.12)

12
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Figure 5: Neutrino energy compared to photon energy vs temperature of neutrinos. Taken from
Dodelson[]]

inversely proportional to the scale factor. This can be directly seen from observing that the energy
of a massless particle scales like a~! as shown in Eq. (1.24). Thus the temperature of neutrinos 7,
satisfies aoT), = a1T;. Solving Eq. (2.12) for the temperature of neutrinos 7, we obtain

T 4 1/3
== (2.13)
T, 11
and conclude that the temperature of neutrino background today is lower compared to the cosmic
microwave background. We find for the temperature of neutrinos today

40\ /3 1/3
1) =19 (11> =2.73 (11> K =1.95K = 1.68 x 10" %V . (2.14)

It has been undeniably shown that neutrinos are massive. The temperature of neutrinos today T2 is

smaller than the square root of the solar mass squared difference, 4/ Am%D = 8.66 x 103eV, and thus

at least two neutrinos are non-relativistic today and their mass can not be neglected. The energy
density of one neutrino is given by

d3p p2 +m2
v =2 - Y 2.1
P / (27)3 eP/Tv 41 (2.15)

and shown in Fig. [5] Thus the total energy density in neutrinos is dominated by their mass p, = m,n,

and we find using n, = 3n,/11
my

~ 94eV

Q,h? (2.16)

2.2 Boltzmann Equation for Number Density

The Boltzmann equation describes the time evolution of the phase space density. We will first concen-
trate on the integrated form of the Boltzmann equation and study the time evolution of the number
densities. For annihilation 1 + 2 <» 3 + 4, we find for the phase space density of particle 1, ny

d (nia® 1
a3(d;) -/ Tt 2r)*5 901 + 92— =) LM

X{fsfs(L£ f1) (T £ fo) = fufo (1 £ f3) (1 £ fa)} (2.17)

13



with the phase space integrals

&*pi

for particle ¢ with g; internal degrees of freedom. The phase space integral is Lorentz invariant

d*p s [ 2 2 2
———0(E — \/p? + m? :/dp/ dES(E* —p* —m 2.19
| 550 ) [ amy( ) (219)
because we implicitly impose that the particle are on-shell, i.e. satisfy the energy-momentum disper-
sion relation

E% =p* +m? (2.20)

Let us understand the different factors in the Boltzmann equation. In the absence of any in-
teractions, the right-hand side of the equation, the Boltzmann equation tells us that the number of
particles in a comoving volume does not change. However the number of particles in a physical volume
scales like a2 due to the expansion. Interactions between the different particles are described by the
integral on the right-hand side. The integrals are over the whole phase space [ dII; of the different par-
ticles involved in the interaction. Energy-momentum conservation is imposed by the four-dimensional
delta function. The factor |M|? is the square of the amplitude (matrix element), which governs the
strength of the interaction. For example in the case of Compton scattering it is proportional to the
fine-structure constant o. It is averaged over initial and final states. The last factor on the right-hand
side consists of two terms and takes into account the occupation numbers (distribution functions) of
the different states. The first term is proportional to f3f4(14 f1)(1+£ f2) and describes the production
of a particle 1 in the process 34+ 4 — 1+ 2, i.e. it is proportional to the initial abundances and the
factors (1 & f;) take into account the possible Pauli-blocking for fermions with a minus sign or Bose
enhancement for bosons with a plus sign. The second term describes the destruction of particle 1 in
the process 1 + 2 — 3 + 4. The first term is sometimes called source term and the second loss term.
Note that we assumed that the process is reversible.

Usually scattering between the different particles enforces kinetic equilibrium, i.e. the different
particle species follow the Bose-Einstein or Fermi-Dirac statistics, however they are not necessarily in
chemical equilibrium and @ would be the chemical potential, which would have to balance against the
other chemical potentials, e.g. for et + e~ <> vy, we would find pe+ + pro— = 24-.

For systems at temperature T' < E — u we can neglect the terms 41 in the denominators of the
Fermi-Dirac and Bose-Einstein distributions and work with the Maxwell-Boltzmann distribution

F(E) = e E-WIT — on/To=B/T (2.21)
Similarly we can neglect the Pauli-blocking/Bose enhancement factors and can approximate

{fsfa(Lx f1) (T £ f2) = fifa (1 £ f3) (1 & fa)}

 fMBpMB _ gMB (MB _ ,~(Ei+E2)/T (e(u3+u4)/T _ e(;ﬂ—&—pg)/T) (2.22)

using energy-momentum conservation. The number density
n; = n\eri/T (2.23)
of species 7 can be expressed as a function of u; and the equilibrium number density

N32
n(O) _ g./ dgp BT _ Gi (T';;T> e—mi/T m; > T
©) _ 4, _ '
Z (2m)? C(3)giLs m; < T

T

(2.24)

14



Using this we can rewrite Eq. (2.22))

—(E1+E2)/T n3ng ning (
e — 2.25)
L)

and consequently the Boltzmann equation

d (nlag) 0 0 nang ning
a3 00 (ov) - (2.26)
dt L néo)nio) ngo)ng))

where we defined the thermally averaged cross section

4
1 -
(00) =~ 11 / diLie~ BT (2m) 450 (py + py — ps — pa) M (2.27)
1 M2 =1

Before moving on, a few comments are in order. Note that we could equally well use E3 + E4
and the equilibrium number densities of the particles 3 and 4. It is straightforward to generalise the
expression to other processes, like decays (1 — 2) processes or scattering with more than 2 particles
in the final state.

The Boltzmann equation can be applied to many processes in the early Universe. We will discuss
the freeze-out of a massive particle, which is relevant for dark matter production, in detail, and outline
how it can be applied to Big-Bang Nucleosynthesis (BBN) and recombination.

If the interaction rate (ov) ngo) is large compared to the Hubble rate, the Boltzmann equation
can only be satisfied if the number densities satisfy

n3ng ninz

= (2.28)
n:(BO)nELO) ngO)ngO)
and consequently the chemical potential are related by
p3 + pa = p1 + po (2.29)

This case is commonly denoted chemical equilibrium in the context of the production of heavy relics,
nuclear statistical equilibrium in the context of big bang nucleosynthesis, and Saha equation in the
context of recombination.

2.3 Freeze-Out

The prime example for freeze-out is dark matter production via freeze-out. We consider a massive
Dirac particle X with mass myx, which is initially in thermal equilibrium with the cosmic plasma, but
later freezes-out, i.e. decouples from the thermal SM plasma. Let us consider processes of the type
XX ¢« 1l, where the pair of particles X X annihilate into a pair of light particles Il and vice versa.
We assume that the light particle is in chemical as well as kinetic equilibrium with the cosmic plasma,

ie n = ngo)' Thus we find for the Boltzmann equation of nx = ng (12.26))

a_3d(nd)ia3) = (o) {(ng?))Q - ngg} . (2.30)
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We will assume that g, is constant, which is a good approximation for temperature well above the
QCD phase transition. In this case entropy conservation tells us that the temperature scales like a™!,
i.e. aT =const. We can factor out the expansion and define

(0)

and Y = - (2.31)

nx

Yzﬁ

to rewrite the differential equation for the number density in the convenient form

day

— =T (ov) (Y(%) - Y2> . (2.32)

The freeze-out process is characterised by the mass mx of the particle X. Thus it is convenient to
express the temperature in terms of mx as follows

z=—=. (2.33)

In the radiation dominated era, the first Friedmann equation can be written as

1 887G 72 833G m3  H(mx)

HT) == )=/ 5 g2(T)T?* = L)X = ——== 2.34

= (5) =5 et G o)™ = 1 (2.31)

using the effective relativistic degrees of freedom g% and consequently the evolution equation can be
rewritten as

= m () (2.35)

with the generally quite large dimensionless parameter

mg( (ov)

A Hmx)

(2.36)

The cross section might depend on temperature, but in many theories it is constant or its temperature
dependence can be neglected. In the following we will assume it to be constant.
There is no general analytic solution. However we can obtain an approximate analytic solution.

As the constant A is generally large, the abundance Y of the particle X will track its equilibrium value
Y(0). However at late times for 7' < mx, i.e. x> 1, when the equilibrium abundance is exponentially
suppressed, we can neglect Y{g) < Y and find at late times

dy A

2~y 2.37

T oLl (2.37)
which can be solved analytically. Integrating the solution from freeze-out, z; to late times z = oo, we

obtain

Yoo = V(2 = 00) ~ %f . (2.38)

An analytic estimate for the freeze-out temperature 7y = mx /x¢ can be obtained from considering

the size of the coefficient
AY(o)

~1 (2.39)
T fo
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Figure 6: Dark matter freeze-out for A = 10'%. Taken from Dodelson[I].

o
—

| I

n/T3

in the rescaled evolution equation

NG 2
r dY At <Y> ) (2.40)
Yio) dx z Yio)

This results in an implicit equation for the freeze-out temperature

gxmx (ov e

(2.41)
Typical values for z; are a few times 10. See Fig.

Finally we want to obtain the energy density in the particle X. At temperature 17 after the
abundance Y reached its asymptotic value Y., the number density is given by Y, 75. For later times,
the number density scales like a 3. Using entropy conservation

9 (To)(a0To)* = ¢3(Th) (a1 T1)? (2.42)

similar to the case of CMB photons and neutrinos we can relate the temperatures and find for the
energy density today

a1y
aoTy

3
ST
) = Yo, TYET0) (2.43)

0 g3(Th)
with ¢5(To)/gs(T1) ~ 1/30. Finally we can express the energy density in terms of the critical energy
density and find

px =mxYo Ty <

o wpmxTgh? gi(Tp) zy [gf(mx)10739cm?
Qxh? ==L = 0.3
A per gi(Th) 10 100 (o)

This is a remarkable result, which nicely ties in with particle physics, because the cross section needed

(2.44)
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Figure 7: Crossing symmetry. Taken from http://www.mpi-hd.mpg.de/1linl

to obtain the correct relic abundance for a particle X with masses of ~ 100 GeV is of order of the
weak-interaction cross section G%. This coincidence is often called WIMP miracle, because a weakly
interacting massive particle (WIMP) automatically obtains the correct abundance via freeze-out to
explain dark matter. They naturally appear in many theories beyond the Standard Model (SM) of
particle physics, like the lightest supersymmetric particle (LSP) in the minimal supersymmetric SM.
There is a big experimental effort to search for these particles using all possible means: colliders, direct
and indirect detection experiments. All three possible channels are related via crossing symmetry with
the cross section relevant for dark matter pair annihilation in the early Universe, as it is shown in
Fig. [7l WIMPs are particularly constrained by direct detection searches as shown in Fig.

2.4 Big Bang Nucleosynthesis (BBIN)

There are many processes contributing to BBN and a detailed discussion is beyond the scope of this
lecture. We will only focus on the production of deuterium and give some general comments in the
accompanying slides.
The condition for nuclear statistical equilibrium for the process n + p <> D + v can be
rewritten as follows
np ng)

_ , (2.45)
NNy ngﬂ)n]()())

where we assumed n, = ngo). Using the equilibrium number density given in Eq. (2.24)), we can rewrite

3/2
np _3 (27”@) p(matmy—mp) /T (2.46)

npny 4 \mympT’

with the masses m,, , p for the proton, neutron and deuterium respectively. The factor of 3/4 originates
from the internal degrees of freedom. Note that the deuterium is in a triplet state of spin. The
combination of masses in the exponent is exactly the binding energy of deuterium Bp. In the prefactor
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Figure 8: Dark matter direct detection.[5]
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we can use my, = my ~ mp/2. Thus we obtain

3/2
np _ 3( 4 > oBp/T (2.47)
npn, 4 \myT

We can finally relate our result to the baryon density. The number densities of both neutron and
proton are proportional to the baryon density n,. Using n, ~ myn, = 2myT3 /7% and dropping the

numerical factors we obtain
"o 7\ 3/2
— ~p () eBr/T (2.48)
myp

Note that 7, ~ 10719 which suppresses the production of deuterium (and also heavier elements) sub-

stantially below the binding energy of the nucleus. The prefactor dominates as long as the temperature
is not much smaller than the binding energy Bp = 2.22 MeV.

3 The Boltzmann Equation

In the last section we studied the integrated form of the Boltzmann equation. However in order to
study anisotropy we have to take the momentum dependence into account and study the unintegrated
form of the Boltzmann equation,

df

I C'[f] (3.1)

with the distribution function f = f(Z,p,t). The left-hand side gives the change of the distribution
function with respect to the affine parameter A\, which we introduced previously and C’[f] is the
collision term taking into account any interactions.

We will again use the momentum four-vector to define the affine parameter A following Eq. .

Thus we obtain
T Lo =ci (32)
dt FE ’
which is exactly Eq. (4.1) in Dodelson[1].
The Boltzmann equations generally connect the different components of the Universe. Electrons
and protons are coupled via the Coulomb interaction, photons and electronsﬂ via Compton scattering.
All particle species are coupled to the metric. See Fig. [9] In the following we will assume that the

perturbations are small and expand all quantities to first order in the small perturbations.

3.1 Metric

As we want to study inhomogeneities and anisotropies, we also have to take a perturbation to the
metric into account. We will consider perturbations to the flat FRW metric and restrict ourselves
to scalar perturbations and do not consider vector or tensor perturbations. The metric in conformal
Newtonian gauge is given by

ds? = —(1 4 2U(Z, t))dt* + a*(t) (1 + 2®(Z, t))d;dz"dx? . (3.3)

V¥ is the Newtonian potential and ®, the perturbation of the spatial curvature. See exercise 3 in
chapter 2 of Dodelson[I] to understand better the physical meaning of the two perturbations.

3Compton scattering between protons and photons is suppressed by the larger mass of a proton compared to an
electron.
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Figure 9: The network of Boltzmann and Einstein equations

3.2 Collisionless Boltzmann Equation for Photons
Not all components of the four-momentum

dz*
Pt = — 3.4
N (3.4)

are independent. As photons are massless particles, we can use the dispersion relation
0 = g P*P = —(1 4 20) (P°)? 4 p? (3.5)
with o o
p* = gi;P'P? = a*(1 + 2®)6;; P' P’ (3.6)

to express the time-component of P* in terms of the spatial components

PO = ﬁip(l — ) (3.7)

to first order in ¥. Note that an overdense region has ¥ < 0 and thus a photon moving out of the
potential well will lose energy, i.e. redshift. The independent parameters are thus the position z*, the
momentum p and the direction of the momentum p' satisfying p'p’d;; = 1. The comoving momentum
P? = Cp' are proportional to the momentum direction p°. Using Eq. we find

P”:ppT . (3.8)

We write the total derivative as the sum of the partial derivatives

A _of  ofdi'  ofdp

dt Ot Oxt dt  Opdt’ (3.9)

Note that we neglected the partial derivative with respect to p’, since it is second order in the small
perturbation. Now we have to reexpress the different terms. Using the chain rule we find for
dzt B dzt d)\ B Pl ,ﬁi

i " and P a TP (310
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to first order. The time derivative of the momentum can be obtained from the zeroth component of

the geodesic equation
dp°

2 — 10, peph 11
d\ af (3 )
The left-hand side can be further evaluated to

ap’ d dp A
— =p(1 = ¥)— 1—-U)=p(1-0) | —(1—-V) —p—ro 12
=0 601 = - | T -] (3.12)

dp ov  pow\] . dp ov  pov
=p(1-V)|—(1-T) — — + —— =p(1 -20) | — — — 4 —— 1

M ) [dt( ) p(ﬁt * aaaﬂ)] P )[dt P\at Taaa)| (8:13)

where we used Eq. (3.10)). In order to evaluate the right-hand side, we have to evaluate the Christoffel
symbol first

ro POPP g% [Ogva | O9us _ 9gap] POP? _ g™ [ 0000 _ Ogap| PP’ (3.14)
0 2 |97 " oxe  dxv | p 2 [ 07 ot ] p |
_ (Z1429) [O900 P°PY [ 090 _ Ogij| PP, Ogoo POP! (3.15)
2 ot or ot | p or' p '
. ov  pov 9P
=p(1—20) (H+ — +2-—— + — 3.16
P )< T T aaxz+at> (310
Combining everything we obtain
ldp 0¥ 0¥ ov P ov 99
-— - ————=-H - — - 2——— — — 1
pdt Ot a Oxt Ot a 0zt Ot (3.17)
1dp oo ﬁz owv
i R A 3.18
= p dt ot a 0zt ( )

This equation describes the change in photon momentum. An overdense region has ® > 0 and ¥ < 0.
The first term accounts for the redshift due to the expansion, the second term states that a photon
loses energy in a deepening potential well and a photon moving into a potential well gains energy.

Finally we have to consider the distribution function. Photons are bosons and thus are described
by a Bose-Einstein distribution in equilibrium. We parameterize the perturbation as a change of the
variation of the temperature O(Z,p,t) = T /T, i.e.

) = oo (o) ] (319

Note that we assume that © does not depend on the magnitude of the photon momentum. This is a
good approximation for small-angle Compton scattering. Thus to leading order we find

a0 af©
oT dp

using that we can change the differentiation of the exponent from T to p.
After expanding each term in the small perturbations, we can now collect our results in Egs.(3.9)),
(3.10), (3.18)), and (3.20)) and are now able to study the collisionless Boltzmann equation. At zeroth

order we obtain

F=19+ =10 =71"—p

o (3.20)

0:

(3.21)

of© © ©) g1 © dT/dt  da/dt ©)
A Hpaf _ofdr Hpﬁf _ / n a/ paf
ot dp oT dt dp T a Op
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and consequently we recover the well-known result aT" = const.
At first order we evaluate each of the terms on the right-hand side of Eq. (3.9)) separately. The
first term evaluates to

0 0 2 £(0) © ©
8<8f @> __990f0  dT 8f 000f© , dr/dt 0 ( of ) 322)

“Pa\Tap T ) T Par ap dt atop . Par op T PPop \Pap

the second term only consists of one term

of© 00 p’
- i 3.23
P Op 07" a (3.23)
and the third term
o [ ofO\ af® (o  p oV
HpO o - e 3.24
" op (p Ip op "\ ot "o (3.24)
partly cancels the first term using the zeroth order equation. Thus we obtain
df ofO 106 P o6 9 P ov
dt - Vit ver e ir-valle syl B 3.25
dt first order b Op ot * a Ox* * ot + a 0x* ( )

The last two account for the effect of gravity, while the first two are entirely due to the change in
the distribution function. It is useful to go to Fourier space for the spatial coordinates and to use
conformal time 7. Defining

3 7 o~ -
OF) = / (;lﬂ’;ez’f'm@(k) (3.26)

and using a dot to indicate a derivative with respect to conformal time (© = d©/dn) we obtain

paf(O)
T Op

af
dt

[é Fikp® + b+ iku\fl] (3.27)

first order

with ku Ep%.

3.3 Collision Terms: Compton Scattering

Photons are interacting with electrons via Compton scattering

e (q) +(p) < e (¢) +() . (3.28)

The collision term for Compton scattering is given by
1
Clr®d] = ’ /dﬂqdﬂqfdﬂp'\MIQ @2r) s +q -1 =) (f()P) - L@FD) - (3.29)

The integral over d3¢’ is trivially evaluated using the delta function over the three-momenta. We want
to evaluate the collision term in the limit of non-relativistic electrons, i.e. FE(q) = m. + ¢*/2m,. and
consequently also photons with small momenta |p| ~ T" < m,. Thus the energy transfer is
., 7 —p-q
Ee(Q) = Ee(qd+p—p) = —"—, (3.30)

Me
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where we used that the momentum of the photons is much smaller than the one of the electrons,
Ip|, [p'| < |q|. As the electrons are non-relativistic, their velocity q/m. ~ v, < 1 is small and similar
to the baryon velocity v,. Thus the energy transfer is of order of T'¢/me ~ Tvp. We can thus expand
the energy delta function around zero energy transfer

2 —»_'_—’_—7'2 _’__V._’aé- — 9
q _p,_(q p p))zé(p_p,wr(p P)-q95(p—p')

1)
(p+ 2me 2me Me op’

. (3.31)

Similarly we can make the approximation that the momentum distribution of the electrons does not
change, i.e. fo(7+ P — ') =~ fe(q). Thus the collision term reads

w d? d3p 7—p)-qo5(p—p
CUYDN = gy [ iy o(@ [ ot ME (300 =9+ TZELIREZEDY (17) — 1)
(3.32)
Following Dodelson, we will neglect the polarisation of the photons and average over it for simplicity of
the discussion. A proper treatment should include the polarisation. The matrix element for Compton
scattering after summing over the polarisation of the incoming and outgoing photons is given by

2
4
|./\/l|2 = 47T0Tmz (2 + Py(p- p’)) — 47T0Tmz (2 + g Z Yzm(ﬁ)YQ*m(ﬁ/)> (3.33)

m=—2

with the second Legendre polynomial 2P»(z) = 322 — 1 and the corresponding spherical harmonics
Y. Note that the integral over the Aazimuthal angle @ vanishes for Y;,,,(p") oc ™% for m # 0. Thus
we find using Yoo (p) = /5/47Pa(p - k) for some fixed k

‘M’Z = 47T0'Tmz (2 + PQ(ILL)PQ('LL/)) (334)

with ¢/ = §' - k The g-integration yields the number density n. and the velocity n.@, in case of the
factor ¢. We expand the distribution functions (3.20)

afOW) af%m) .
10) = 56) = 1O — 10) 2L e + 2 P (3.35)
It is easy to see that the zeroth order term vanishes, because the product of the delta-function with the
difference of the equilibrium distributions vanishes, when integrated over p’. The leading non-vanishing
term is given by the sum of the terms proportional to v, and ©, which we evaluate separately. Using
spherical coordinates for the p’ integral we obtain

orn 0) (o (0)
Col () = e [ dsy (2 PaluPa) [ Ha's(p ) (—p'me@’) + pafap“’)@(ﬁ))
(3.36)
(3.37)

The momentum integral of Cg can be directly evaluated with the delta function and we obtain

(0)
Colf ()] = ornp @)

oo (00) — 00+ S Paien) (3.39)
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where we defined the moments

Loftad
0= = | RGN (3:39)

The second term C,

Culi) = 22 [ ot 2+ P Pu(u) [ a5 51)- 5 2B (1000) — 1O0) (3.0

can be similarly evaluated by first noticing that the angular integral over Py(u)p’ - 0 is odd and
vanishes and by using partial integration to remove the derivative from the delta function

Clf @) =~ [ as (24 PaPa(a) / W15 [ 5 (100 - 100)] Gy
=20 [ a0 (24 P P) [ an'stp o [ a2 )] (3.42)
(0)
= —O'Tnepafap(p)ﬁ . Ub (343)
Collecting both term, we obtain for the collision term
(0)
1) = arnp?L P [9(15) 0yt Loy - Ub] | (3.44)

Finally we take the Fourier transform of the collision term. Typically we will assume that the velocity
points in the same direction as k, i.e. so the Fourier transform of p- ¢ becomes 0. Hence the Fourier
transform (of the spatial directions) is given by

(0) . _ _
Clf(p)] = aTnepafap(p) {9(]5) — O + %PQ(M)@Q — @bﬂ:| (3.45)

3.4 Boltzmann Equation for Photons

Combining the result for the collisionless Boltzmann equation (3.27)) with the collision term (3.45)),

we obtain the Boltzmann equation for photons coupled to non-relativistic electrons
3 ~ X ~ ~ 1 ~ ~
O 4+ ikpuO + ¢ + 1kpV = ornea [@0 + §P2(/.L)®2 + Uppt — @} . (3.46)

Note that the different Fourier modes do not mix and thus evolve independently. This only holds in the
linear regime. If the perturbations can be large, as it is the case for matter, the linear approximation
breaks down and different Fourier modes will couple. Finally we use the optical depth

70
T(n) = / dn'neora, (3.47)
n

which characterises how much light is absorbed by the electrons, i.e. the intensity I(1ny) today com-
pared to the intensity at 7,
I(no) = I(n)e™" (3.48)

to write the Boltzmann equation describing photons

é + z'k:,u(:) + (i) + iku\if = -7 I:é() + %Pg(u)ég + Uppt — 0| . (3.49)
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