Searches for cLFV at Current and Future Colliders

Michael A. Schmidt

17 June 2019

@ CLFV2019, Fukuoka, Japan

Motivation

The Standard Model is very successful...

... but incomplete

In particular neutrinos are massive

- ightarrow Flavour changing processes are a sensitive probe
 - in SM+ $m_{
 u}$ suppressed by unitarity, $\mathcal{A} \sim G_F m_{
 u}^2 \simeq 10^{-26}$
 - many neutrino mass models have large charged LFV due to non-unitarity or new contributions,
 - e.g. inverse seesaw, radiative mass models
 - could be completely unrelated to neutrino mass, e.g. SUSY

Motivation

The Standard Model is very successful...

... but incomplete

In particular neutrinos are massive

- ightarrow Flavour changing processes are a sensitive probe
 - in SM+ $m_{
 u}$ suppressed by unitarity, $\mathcal{A} \sim G_F m_{
 u}^2 \simeq 10^{-26}$
 - many neutrino mass models have large charged LFV due to non-unitarity or new contributions,
 - e.g. inverse seesaw, radiative mass models
 - could be completely unrelated to neutrino mass, e.g. SUSY

The Standard Model is very successful...

... but incomplete

In particular neutrinos are massive

- \rightarrow Flavour changing processes are a sensitive probe
 - in SM+ m_{ν} suppressed by unitarity, $\mathcal{A} \sim \mathit{G_F} m_{\nu}^2 \simeq 10^{-26}$
 - many neutrino mass models have large charged LFV due to non-unitarity or new contributions,
 e.g. inverse seesaw, radiative mass models
 - could be completely unrelated to neutrino mass, e.g. SUSY

The Standard Model is very successful...

... but incomplete

In particular neutrinos are massive

- \rightarrow Flavour changing processes are a sensitive probe
 - in SM+ m_{ν} suppressed by unitarity, $\mathcal{A}\sim \mathit{G_F}m_{\nu}^2\simeq 10^{-26}$
 - many neutrino mass models have large charged LFV due to non-unitarity or new contributions, e.g. inverse seesaw, radiative mass models
 - could be completely unrelated to neutrino mass, e.g. SUSY

Motivation

Can high-energy colliders compete with the intensity frontier?

Motivation

Can high-energy colliders compete with the intensity frontier?

Overview

Z boson decays

Higgs boson decay

Top-quark decay

Heavy resonance decay

Scattering at the LHC

Scattering at future lepton colliders

Conclusions

Colliders

Ellis 1810.11263

Z boson decays

cLFV Z boson decays

 $Z \rightarrow e\mu$: ATLAS 1408.5774, CMS EXO-13-005 $Z \rightarrow \ell \tau$: DELPHI ($\mu \tau$), OPAL ($e\tau$) ATLAS, 13 TeV, 36.1 fb⁻¹ 1804.09568 almost same sensitivity for $\mu \tau$ No tree-level FCNC in SM induced at 1 loop in SM $+m_{\nu}$

Observation clear sign of new physics e.g. due to a leptoquark

today typically less stringent as low-energy precision experiments

but will be more interesting with new Z boson factory

or if there is a signal to disentangle physics

See also poster on $Z \to \tau \ell$ at ATLAS by Ann-Kathrin Perrevoort

cLFV Z boson decays

 $Z \rightarrow e\mu$: ATLAS 1408.5774, CMS EXO-13-005 $Z \rightarrow \ell \tau$: DELPHI ($\mu \tau$), OPAL ($e\tau$) ATLAS, 13 TeV, 36.1 fb⁻¹ 1804.09568 almost same sensitivity for $\mu \tau$ No tree-level FCNC in SM induced at 1 loop in SM $+m_{\nu}$

Observation clear sign of new physics e.g. due to a leptoquark

today typically less stringent as low-energy precision experiments

but will be more interesting with new Z boson factory or if there is a signal to disentangle physic

See also poster on $Z \to \tau \ell$ at ATLAS by Ann-Kathrin Perrevoort

cLFV Z boson decays

No tree-level FCNC in SM induced at 1 loop in SM $+m_{\nu}$

Observation clear sign of new physics e.g. due to a leptoquark

today typically less stringent as low-energy precision experiments

but will be more interesting with new Z boson factory or if there is a signal to disentangle physics

almost same sensitivity for $\mu\tau$

Higgs boson decay

cLFV Higgs decay

Dimension-6 SMEFT operators Grzadkowski et al 1008.4884

CMS 1712.07173

cLFV Higgs decay cont.

$$\sqrt{|Y_{\ell\tau}|^2 + |Y_{\tau\ell}|^2} = \frac{8\pi\Gamma_H(SM)}{m_H} \frac{BR(H \to \ell\tau)}{1 - BR(H \to \ell\tau)}$$

General (type-III) 2 Higgs doublet model

EFT

$$\mathcal{L} = \left[\frac{m_i}{v}\delta_{ij} + \frac{c_{ij}}{\sqrt{2}}\frac{v^2}{\Lambda^2}\right]h\bar{\ell}_i P_R\ell_j$$

two neutral CP even Higgs

$$\Phi_i = (v_i + \phi_i)/\sqrt{2}$$
 $\frac{v_2}{v_1} = t_{\beta}$

SM Higgs: $h = -s_{\alpha}\phi_1 + c_{\alpha}\phi_2$ with Yukawa couplings

$$Y_{ij} = -rac{s_lpha}{c_eta} rac{m_i}{v} \delta_{ij} + rac{\cos(eta-lpha)}{c_eta} rac{\sqrt{m_i m_j}}{v} \chi^\ell_{ij}$$

Not suppressed by $\nu^2/\Lambda^2 \rightarrow$ large contribution

$${\it BR}(h
ightarrow \mu au) \propto \left(ert \chi^\ell_{23} ert^2 + ert \chi^\ell_{32} ert^2
ight) \cos^2(eta \! - \! lpha) (1 \! + \! an^2 eta$$

8

Example: Zee model

- Non-zero neutrino masses
- generated at loop level Zee 1980
- Simplest model with 2 Higgs doublets and charged singlet scalar *h*⁺

[see Herrero-Garcia et al 1605.06091 for Higgs cLFV in other neutrino mass models]

Future lepton collider

ILC $\sqrt{s} = 250$ GeV, 4 polarizations, $\mathcal{L} = 2$ ab⁻¹ CEPC $\sqrt{s} = 240$ GeV, $\mathcal{L} = 5$ ab⁻¹

Future lepton collider

Top-quark decay

cLFV top-quark [Davidson et al 1507.07163]

described by D6 operators with 1 top quark and 2 charged leptons

$$\mathcal{L} = 2\sqrt{2}G_F\sum_i \epsilon_i \mathcal{O}_i$$

e.g. $\mathcal{O}_{LL,RR,LR,RL}^{AV} = (\bar{\ell}_i \gamma^{\alpha} P_X \ell_j) (\bar{u}_q \gamma_{\alpha} P_Y t)$

Davidson et al 1507.07163

- HERA $\sigma(e^{\pm}p \rightarrow e^{\pm}t + X) \leq 0.3pb$
- $K \rightarrow e\mu$, $\mu \rightarrow e\gamma$
- radiative corrections

 $e\mu$ op's: most $|\epsilon| \lesssim O(10^{-3} - 10^{-2})$, some O(1) $au\ell$ op's O(1 - 100) $|\epsilon_{S+P,L}^{ut}| \le 0.03$

cLFV top-quark [Davidson et al 1507.07163]

described by D6 operators with 1 top quark and 2 charged leptons

$$\mathcal{L} = 2\sqrt{2}G_F\sum_i\epsilon_i\mathcal{O}_i$$

e.g. $\mathcal{O}_{LL,RR,LR,RL}^{AV} = (\bar{\ell}_i \gamma^{\alpha} P_X \ell_j) (\bar{u}_q \gamma_{\alpha} P_Y t)$

Davidson et al 1507.07163

- HERA $\sigma(e^{\pm}p \rightarrow e^{\pm}t + X) \leq 0.3pb$
- $K \rightarrow e\mu, \ \mu \rightarrow e\gamma$
- radiative corrections

 $e\mu$ op's: most $|\epsilon| \lesssim O(10^{-3} - 10^{-2})$, some O(1) $au\ell$ op's O(1 - 100) $|\epsilon_{S+P,L}^{ut}| \le 0.03$

cLFV top-quark [Davidson et al 1507.07163]

described by D6 operators with 1 top quark and 2 charged leptons

$$\mathcal{L} = 2\sqrt{2}G_F \sum_i \epsilon_i \mathcal{O}_i$$

e.g. $\mathcal{O}_{LL,RR,LR,RL}^{AV} = (\bar{\ell}_i \gamma^{\alpha} P_X \ell_j) (\bar{u}_q \gamma_{\alpha} P_Y t)$

Davidson et al 1507.07163

single top quark production (more diag's)

- HERA $\sigma(e^{\pm}p \rightarrow e^{\pm}t + X) \leq 0.3pb$
- $K \rightarrow e\mu$, $\mu \rightarrow e\gamma$
- radiative corrections

 $e\mu$ op's: most $|\epsilon| \lesssim O(10^{-3} - 10^{-2})$, some O(1) $au\ell$ op's O(1 - 100) $|\epsilon_{S+P,L}^{ut}| \le 0.03$

cLFV top quark decay: top-quark pair production

cross section

$$\sigma = 2\sigma_{t\bar{t}} BR(t \rightarrow \ell \nu b)$$

 $\times BR(t \rightarrow \ell^{\pm} \ell^{/\mp} q)$

$$BR(t
ightarrow \ell^{\pm} \ell'^{\mp} + q) \simeq 0.0027 \sum_{X,Y} |\epsilon_{XY}|^2$$

Davidson et al 1507.07163

Main backgrounds:

- $t\overline{t}$ with non-prompt lepton
- Z+ jets

Multi-variate analysis w/ 13 var's using BDT observed [expected] limit

$$BR(t
ightarrow \ell\ell' q) < 1.86[1.36^{+0.61}_{-0.37}] imes 10^{-5} \ BR(t
ightarrow e \mu q) < 6.6[4.8^{+2.1}_{-1.4}] imes 10^{-5}$$

 $\rightarrow |\epsilon| \lesssim 0.1$, more stringent for $t \rightarrow \tau + X$ low-energy lim's stronger for most $e\mu$ op's: $\epsilon_{LL,RL}$, $\epsilon_{S\pm P,R}$, $\epsilon_{T,R}$

Heavy resonance decay

Heavy resonance: Z', RPV SUSY $\tilde{\nu}_{\tau}$, quantum black hole

$$Z'$$

 $Q_{ij} = rac{g_{ij}}{g_{Z,SM}}$

 $\begin{array}{l} \mathsf{RPV} \; \mathsf{SUSY} \; \tilde{\nu}_{\tau} \\ W = \frac{1}{2} \lambda_{ijk} L_i L_j E_k^c \\ + \lambda_{ijk}' L_i Q_j D_k^c \end{array}$

QBH ADD (universal ED) RS (warped ED) *n* number of ED

ATLAS 1807.06573

Heavy resonance: Z', RPV SUSY $\tilde{\nu}_{\tau}$ cont.

Scattering at the LHC

Relevant effective operators [Cai, MS 1510.02486]

D6 Operators with 2 Quarks and 2 Leptons

Buchmüller, Wyler NPB268(1986)621; Grzadkowski et al 1008.4884; Carpentier, Davidson 1008.0280; Petrov, Zhuridov 1308.6561

Vector

$$\begin{aligned} \mathcal{Q}_{lq}^{(1)} &= (\bar{L}\gamma_{\mu}L)(\bar{Q}\gamma^{\mu}Q) & \mathcal{Q}_{lq}^{(3)} &= (\bar{L}\gamma_{\mu}\tau^{I}L)(\bar{Q}\gamma^{\mu}\tau^{I}Q) \\ \mathcal{Q}_{eu} &= (\bar{\ell}\gamma_{\mu}\ell)(\bar{u}\gamma^{\mu}u) & \mathcal{Q}_{ed} &= (\bar{\ell}\gamma_{\mu}\ell)(\bar{d}\gamma^{\mu}d) \\ \mathcal{Q}_{lu} &= (\bar{L}\gamma_{\mu}L)(\bar{u}\gamma^{\mu}u) & \mathcal{Q}_{ld} &= (\bar{L}\gamma_{\mu}L)(\bar{d}\gamma^{\mu}d) \\ \mathcal{Q}_{qe} &= (\bar{Q}\gamma_{\mu}Q)(\bar{\ell}\gamma^{\mu}\ell) \end{aligned}$$

$$\mathcal{Q}_{\textit{ledg}} = (\bar{L}^{lpha}\ell)(\bar{d}Q^{lpha}) \qquad \mathcal{Q}^{(1)}_{\textit{leau}} = (\bar{L}^{lpha}\ell)\epsilon_{lphaeta}(\bar{Q}^{eta}u)$$

with same-flavour quark

Tensor $Q_{lequ}^{(3)} = (\bar{L}^{\alpha}\sigma_{\mu\nu}\ell)\epsilon_{\alpha\beta}(\bar{Q}^{\beta}\sigma^{\mu\nu}u)$

D8 Operators with 2 Gluons and 2 Leptons

 $\begin{aligned} \mathcal{O}_{X}^{ij} &= \alpha_{s} G_{\mu\nu}^{a} G^{a\mu\nu} \left(\bar{e}_{Ri} L_{j} \cdot \phi^{*} + h.c. \right) & \mathcal{O}_{X}^{\prime ij} &= i \, \alpha_{s} G_{\mu\nu}^{a} \tilde{G}^{a\mu\nu} \left(\bar{e}_{Ri} L_{j} \cdot \phi^{*} - h.c. \right) \\ \bar{\mathcal{O}}_{X}^{ij} &= i \, \alpha_{s} G_{\mu\nu}^{a} G^{a\mu\nu} \left(\bar{e}_{Ri} L_{j} \cdot \phi^{*} - h.c. \right) & \bar{\mathcal{O}}_{X}^{\prime ij} &= \alpha_{s} G_{\mu\nu}^{a} \tilde{G}^{a\mu\nu} \left(\bar{e}_{Ri} L_{j} \cdot \phi^{*} + h.c. \right) \\ \mathcal{O}_{Y}^{ij} &= i \, \alpha_{s} G_{\mu\rho}^{a} G_{\sigma\nu}^{a} \eta^{\rho\sigma} \bar{L}_{i} \gamma^{\mu} D^{\nu} L_{j} & \mathcal{O}_{Z}^{ij} &= i \, \alpha_{s} G_{\mu\rho}^{a} G_{\sigma\nu}^{a} \eta^{\rho\sigma} \bar{e}_{Ri} \gamma^{\mu} D^{\nu} e_{Rj} \end{aligned}$

Relevant effective operators [Cai, MS 1510.02486]

D6 Operators with 2 Quarks and 2 Leptons

Buchmüller, Wyler NPB268(1986)621; Grzadkowski et al 1008.4884; Carpentier, Davidson 1008.0280; Petrov, Zhuridov 1308.6561

Vector

$$\begin{aligned} \mathcal{Q}_{lq}^{(1)} &= (\bar{L}\gamma_{\mu}L)(\bar{Q}\gamma^{\mu}Q) & \mathcal{Q}_{lq}^{(3)} &= (\bar{L}\gamma_{\mu}\tau^{I}L)(\bar{Q}\gamma^{\mu}\tau^{I}Q) \\ \mathcal{Q}_{eu} &= (\bar{\ell}\gamma_{\mu}\ell)(\bar{u}\gamma^{\mu}u) & \mathcal{Q}_{ed} &= (\bar{\ell}\gamma_{\mu}\ell)(\bar{d}\gamma^{\mu}d) \\ \mathcal{Q}_{lu} &= (\bar{L}\gamma_{\mu}L)(\bar{u}\gamma^{\mu}u) & \mathcal{Q}_{ld} &= (\bar{L}\gamma_{\mu}L)(\bar{d}\gamma^{\mu}d) \\ \mathcal{Q}_{qe} &= (\bar{Q}\gamma_{\mu}Q)(\bar{\ell}\gamma^{\mu}\ell) \end{aligned}$$

Scalar

$$\mathcal{Q}_{ledg} = (\bar{L}^{lpha}\ell)(\bar{d}Q^{lpha})$$

$$\mathcal{Q}_{lequ}^{(1)} = (\bar{L}^{lpha}\ell)\epsilon_{lphaeta}(\bar{Q}^{eta}u)$$

with same-flavour quark

Tensor $Q_{lequ}^{(3)} = (\bar{L}^{\alpha}\sigma_{\mu\nu}\ell)\epsilon_{\alpha\beta}(\bar{Q}^{\beta}\sigma^{\mu\nu}u)$

D8 Operators with 2 Gluons and 2 Leptons

 $\begin{aligned} \mathcal{O}_{X}^{ij} &= \alpha_{s} G_{\mu\nu}^{a} G^{a\mu\nu} \left(\bar{e}_{Ri} L_{j} \cdot \phi^{*} + h.c. \right) & \mathcal{O}_{X}^{\prime ij} &= i \, \alpha_{s} G_{\mu\nu}^{a} \tilde{G}^{a\mu\nu} \left(\bar{e}_{Ri} L_{j} \cdot \phi^{*} - h.c. \right) \\ \bar{\mathcal{O}}_{X}^{ij} &= i \, \alpha_{s} G_{\mu\nu}^{a} G^{a\mu\nu} \left(\bar{e}_{Ri} L_{j} \cdot \phi^{*} - h.c. \right) & \bar{\mathcal{O}}_{X}^{\prime ij} &= \alpha_{s} G_{\mu\nu}^{a} \tilde{G}^{a\mu\nu} \left(\bar{e}_{Ri} L_{j} \cdot \phi^{*} + h.c. \right) \\ \mathcal{O}_{Y}^{ij} &= i \, \alpha_{s} G_{\mu\rho}^{a} G_{\sigma\nu}^{a} \eta^{\rho\sigma} \bar{L}_{i} \gamma^{\mu} D^{\nu} L_{j} & \mathcal{O}_{Z}^{ij} &= i \, \alpha_{s} G_{\mu\rho}^{a} G_{\sigma\nu}^{a} \eta^{\rho\sigma} \bar{e}_{Ri} \gamma^{\mu} D^{\nu} e_{Rj} \end{aligned}$

Relevant effective operators [Cai, MS 1510.02486]

D6 Operators with 2 Quarks and 2 Leptons

Buchmüller, Wyler NPB268(1986)621; Grzadkowski et al 1008.4884; Carpentier, Davidson 1008.0280; Petrov, Zhuridov 1308.6561

Vector

$$\begin{aligned} \mathcal{Q}_{lq}^{(1)} &= (\bar{L}\gamma_{\mu}L)(\bar{Q}\gamma^{\mu}Q) & \mathcal{Q}_{lq}^{(3)} &= (\bar{L}\gamma_{\mu}\tau^{I}L)(\bar{Q}\gamma^{\mu}\tau^{I}Q) \\ \mathcal{Q}_{eu} &= (\bar{\ell}\gamma_{\mu}\ell)(\bar{u}\gamma^{\mu}u) & \mathcal{Q}_{ed} &= (\bar{\ell}\gamma_{\mu}\ell)(\bar{d}\gamma^{\mu}d) \\ \mathcal{Q}_{lu} &= (\bar{L}\gamma_{\mu}L)(\bar{u}\gamma^{\mu}u) & \mathcal{Q}_{ld} &= (\bar{L}\gamma_{\mu}L)(\bar{d}\gamma^{\mu}d) \\ \mathcal{Q}_{qe} &= (\bar{Q}\gamma_{\mu}Q)(\bar{\ell}\gamma^{\mu}\ell) \end{aligned}$$

Scalar $\mathcal{Q}_{ledq} = (\bar{L}^{\alpha}\ell)(\bar{d}Q^{\alpha})$

$$\mathcal{Q}_{lequ}^{(1)} = (\bar{L}^{lpha}\ell)\epsilon_{lphaeta}(ar{Q}^{eta}u)$$

with same-flavour quark

Tensor
$$Q_{lequ}^{(3)} = (\bar{L}^{\alpha}\sigma_{\mu\nu}\ell)\epsilon_{\alpha\beta}(\bar{Q}^{\beta}\sigma^{\mu\nu}u)$$

D8 Operators with 2 Gluons and 2 Leptons

$$\begin{aligned} \mathcal{O}_{X}^{ij} &= \alpha_{s} G_{\mu\nu}^{a} G^{a\mu\nu} \left(\bar{e}_{Ri} L_{j} \cdot \phi^{*} + h.c. \right) & \mathcal{O}_{X}^{\prime ij} &= i \, \alpha_{s} G_{\mu\nu}^{a} \tilde{G}^{a\mu\nu} \left(\bar{e}_{Ri} L_{j} \cdot \phi^{*} - h.c. \right) \\ \bar{\mathcal{O}}_{X}^{ij} &= i \, \alpha_{s} G_{\mu\nu}^{a} G^{a\mu\nu} \left(\bar{e}_{Ri} L_{j} \cdot \phi^{*} - h.c. \right) & \bar{\mathcal{O}}_{X}^{\prime ij} &= \alpha_{s} G_{\mu\nu}^{a} \tilde{G}^{a\mu\nu} \left(\bar{e}_{Ri} L_{j} \cdot \phi^{*} + h.c. \right) \\ \mathcal{O}_{Y}^{ij} &= i \, \alpha_{s} G_{\mu\rho}^{a} G_{\sigma\nu}^{a} \eta^{\rho\sigma} \bar{L}_{i} \gamma^{\mu} D^{\nu} L_{j} & \mathcal{O}_{Z}^{ij} &= i \, \alpha_{s} G_{\mu\rho}^{a} G_{\sigma\nu}^{a} \eta^{\rho\sigma} \bar{e}_{Ri} \gamma^{\mu} D^{\nu} e_{Rj} \end{aligned}$$

Precision Experiments [Cai, MS 1510.02486]

cLFV at the Large Hadron Collider (LHC) [Cai, MS 1510.02486]

Signal: opposite-sign different flavour pair of leptons Several existing searches:

- ATLAS 7 TeV: LFV heavy neutral particle decay to $e\mu$ ATLAS 1103.5559
- CMS 8 TeV: LFV heavy neutral particle decay to $e\mu$ CMS-PAS-EXO-13-002
- ATLAS 7 TeV: LFV in *e*μ continuum in *K* SUSY_{ATLAS 1205.0725}
- ATLAS 8 TeV: LFV heavy neutral particle decayATLAS 1503.04430
- CMS 8 TeV: LFV heavy neutral particle decay to $e\mu$ CMS 1604.05239
- ATLAS 13 TeV, 3.2 fb⁻¹: LFV heavy neutral particle decay ATLAS 1607.08079
- ATLAS 13 TeV, 36.1 fb⁻¹ atlas 1807.06573

Recast limits of most sensitive previous searches

ATLAS 1503.04430	ATLAS 1205.0725
8 TeV	7 TeV
$20.3~{\rm fb}^{-1}$	$2.1~{ m fb}^{-1}$
e μ , e $ au$, μau	$e\mu$
inclusive	exclusive
including arbitrary number of jets	separated by number of jets

Projection to 14 TeV

- Assuming 300 fb⁻¹
- Follow searching strategy of exclusive 7 TeV search

Recast limits of most sensitive previous searches

ATLAS 1503.04430	ATLAS 1205.0725
8 TeV	7 TeV
$20.3~{\rm fb}^{-1}$	$2.1~{ m fb}^{-1}$
e μ , e $ au$, μau	e μ
inclusive	exclusive
including arbitrary number of jets	separated by number of jets

Projection to 14 TeV

- Assuming 300 fb⁻¹
- Follow searching strategy of exclusive 7 TeV search
Recast limits of most sensitive previous searches

ATLAS 1503.04430	ATLAS 1205.0725
8 TeV	7 TeV
$20.3~{\rm fb}^{-1}$	$2.1~{ m fb}^{-1}$
e μ , e $ au$, μau	$e\mu$
inclusive	exclusive
including arbitrary number of jets	separated by number of jets

Projection to 14 TeV

- Assuming 300 fb⁻¹
- Follow searching strategy of exclusive 7 TeV search

ATLAS Searches [Cai, MS 1510.02486]

ATLAS 7TeV 1205.0725

ATLAS 8TeV 1503.04430

cLFV at hadron colliders: quarks

 $\mathcal{Q}_{ledq} = (\bar{L}^{lpha}\ell)(\bar{d}Q^{lpha}) , \qquad \mathcal{Q}^{(1)}_{lequ} = (\bar{L}^{lpha}\ell)\epsilon_{lphaeta}(\bar{Q}^{eta}u)$

LHC more interesting for vector operators with right-handed quark currents due to weaker constraints from intensity frontier

 $[\bar{q}\gamma_{\mu}P_{R}q][\bar{\ell}\gamma_{\mu}P_{R,L}\ell]$

cLFV at hadron colliders: quarks

 $\mathcal{Q}_{ledq} = (\bar{L}^{lpha}\ell)(\bar{d}Q^{lpha}) , \qquad \mathcal{Q}^{(1)}_{lequ} = (\bar{L}^{lpha}\ell)\epsilon_{lphaeta}(\bar{Q}^{eta}u)$

LHC more interesting for vector operators with right-handed quark currents due to weaker constraints from intensity frontier

 $[\bar{q}\gamma_{\mu}P_{R}q][\bar{\ell}\gamma_{\mu}P_{R,L}\ell]$

cLFV at the Large Hadron Collider (LHC): gluons [Cai, MS, Valencia 1802.09822]

 $pp \rightarrow \ell_i \ell_i$

Signal:

opposite-sign different flavour pair of leptons

Most sensitive searches

ATLAS 1607.08079	CMS-PAS-EXO-16-058 1802.01122
13 TeV	13 TeV
$3.2~{\rm fb}^{-1}$	$35.9~{ m fb}^{-1}$
e μ , e $ au$, μau	$e\mu$
inclusive	inclusive

newer ATLAS search: 13 TeV, 36.1 fb⁻¹ 1807.06573

EFT scattering amplitudes

$$\mathcal{A}(s)\simeq rac{s}{\Lambda^2}\stackrel{s
ightarrow\infty}{\longrightarrow}\infty$$

 \Rightarrow Violation of perturbative unitarity

.....

- UV-complete models/simplified models
- apply unitarization procedure, e.g. K-matrix unitarization

Wigner 1964; Wigner, Eisenbud 1947; Gupta 1950

Recent application to monojets: Bell, Busoni, Kobakhidze, Long, MS 1606.02722

• couplings \rightarrow form factor

Baur, Zeppenfeld hep-ph/9309227

cLFV at the Large Hadron Collider (LHC): gluons [Gai, MS, Valencia 1802.09822]

 $pp \rightarrow \ell_i \ell_i$

Signal:

opposite-sign different flavour pair of leptons

Most sensitive searches

ATLAS 1607.08079	CMS-PAS-EXO-16-058 1802.01122
13 TeV	13 TeV
$3.2~{\rm fb}^{-1}$	$35.9~{ m fb}^{-1}$
eμ, <mark>e</mark> τ, μτ	$e\mu$
inclusive	inclusive

newer ATLAS search: 13 TeV, 36.1 fb⁻¹ 1807.06573

EFT scattering amplitudes

$$\mathcal{A}(s)\simeq rac{s}{\Lambda^2}\stackrel{s
ightarrow\infty}{\longrightarrow}\infty$$

 \Rightarrow Violation of perturbative unitarity

- UV-complete models/simplified models
- apply unitarization procedure, e.g. K-matrix unitarization

Wigner 1964; Wigner, Eisenbud 1947; Gupta 1950

Recent application to monojets: Bell, Busoni, Kobakhidze, Long, MS 1606.02722

• couplings \rightarrow form factor

Baur, Zeppenfeld hep-ph/9309227

cLFV at the Large Hadron Collider (LHC): gluons [Cai, MS, Valencia 1802.09822]

Solutions:

$pp ightarrow \ell_i \ell_j$

Signal:

opposite-sign different flavour pair of leptons

Most sensitive searches

ATLAS 1607.08079	CMS-PAS-EXO-16-058 1802.01122
13 TeV	13 TeV
$3.2~{\rm fb}^{-1}$	$35.9~{ m fb}^{-1}$
e μ , e $ au$, μau	$e\mu$
inclusive	inclusive

newer ATLAS search: 13 TeV, 36.1 fb⁻¹ 1807.06573

EFT scattering amplitudes

$$\mathcal{A}(s)\simeq rac{s}{\Lambda^2}\stackrel{s
ightarrow\infty}{\longrightarrow}\infty$$

 \Rightarrow Violation of perturbative unitarity

• UV-complete models/simplified models

• apply unitarization procedure, e.g. K-matrix unitarization

Wigner 1964; Wigner, Eisenbud 1947; Gupta 1950

Recent application to monojets: Bell, Busoni, Kobakhidze, Long, MS 1606.02722

- couplings \rightarrow form factor

Baur, Zeppenfeld hep-ph/9309227

$$C
ightarrow rac{C}{1+rac{\hat{s}}{\Lambda^2}}$$

cLFV at hadron colliders: gluons

Scattering at future lepton colliders

Bileptons - seven simplified models [Li,MS 1809.07924]

$$\mathcal{L} = y_2^{ij} H_2 \bar{L}_i P_R \ell_j + h.c.$$

LH singlet vector $H_1 \sim (1,0)$

$$\mathcal{L} = y_1^{ij} \mathbf{H}_{1\mu} \bar{L}_i \gamma^{\mu} P_L L_j$$

LH triplet vector $H_3 \sim (3,0)$

$$\mathcal{L} = y_3^{ij} \bar{L}_i \gamma^\mu \vec{\sigma} \cdot \frac{H_{3\mu}}{P_L L_j}$$

right-handed vector $H_1' \sim (1,0)$

$$\mathcal{L} = y_1^{\prime i j} \mathcal{H}_{1\mu}^{\prime} \bar{\ell}_i \gamma^{\mu} \mathcal{P}_R \ell_j$$

 $\Delta L=2$ right-handed scalar $\Delta_1 \sim (1,2)$

$$\mathcal{L} = \lambda_1^{ij} \Delta_1 \ell_i^T C P_R \ell_j + h.c.$$

left-handed scalar $\Delta_3 \sim (3,1)$

$$\mathcal{L} = -\frac{\lambda_3^{ij}}{\sqrt{2}} L_i^T C i \sigma_2 \vec{\sigma} \cdot \vec{\Delta}_3 P_L L_j + h.c.$$

vector $\Delta_2 \sim (2, \frac{3}{2})$

 $\mathcal{L} = \lambda_2^{ij} \Delta_{2\mu\alpha} L_{i\beta}^T \gamma^{\mu} P_R \ell_j \epsilon_{\alpha\beta} + h.c.$

assumption: real and symmetric Yukawa coupling matrices

related work: Dev, Mohapatra, Zhang 1711.08430, also 1712.03642, 1803.11167

Bileptons - seven simplified models [Li,MS 1809.07924]

$$\mathcal{L} = y_2^{ij} H_2 \overline{L}_i P_R \ell_j + h.c.$$

LH singlet vector $H_1 \sim (1,0)$

$$\mathcal{L} = y_1^{ij} \mathbf{H}_{1\mu} \bar{L}_i \gamma^{\mu} P_L L_j$$

LH triplet vector $H_3 \sim (3,0)$

$$\mathcal{L} = y_3^{ij} \bar{L}_i \gamma^{\mu} \vec{\sigma} \cdot \mathbf{H}_{3\mu} P_L L_j$$

right-handed vector $H_1' \sim (1,0)$

$$\mathcal{L} = y_1^{\prime i j} \mathcal{H}_{1\mu}^{\prime} \bar{\ell}_i \gamma^{\mu} \mathcal{P}_R \ell_j$$

 $\Delta L = 2$ right-handed scalar $\Delta_1 \sim (1,2)$

$$\mathcal{L} = \lambda_1^{ij} \Delta_1 \ell_i^T C P_R \ell_j + h.c.$$

left-handed scalar $\Delta_3 \sim (3,1)$

$$\mathcal{L} = -\frac{\lambda_3^{ij}}{\sqrt{2}} L_i^T Ci\sigma_2 \vec{\sigma} \cdot \vec{\Delta}_3 P_L L_j + h.c.$$

vector $\Delta_2 \sim (2, \frac{3}{2})$

$$\mathcal{L} = \lambda_2^{ij} \Delta_{2\mu\alpha} L_{i\beta}^T \gamma^{\mu} P_R \ell_j \epsilon_{\alpha\beta} + h.c.$$

assumption: real and symmetric Yukawa coupling matrices

related work: Dev, Mohapatra, Zhang 1711.08430, also 1712.03642, 1803.11167

Bileptons - seven simplified models [Li,MS 1809.07924]

$$\mathcal{L} = y_2^{ij} H_2 \overline{L}_i P_R \ell_j + h.c.$$

LH singlet vector $H_1 \sim (1,0)$

$$\mathcal{L} = y_1^{ij} \mathbf{H}_{1\mu} \bar{L}_i \gamma^{\mu} P_L L_j$$

LH triplet vector $H_3 \sim (3,0)$

$$\mathcal{L} = y_3^{ij} \bar{L}_i \gamma^\mu \vec{\sigma} \cdot H_{3\mu} P_L L_j$$

right-handed vector $H_1' \sim (1,0)$

$$\mathcal{L} = y_1^{\prime i j} \mathcal{H}_{1\mu}^{\prime} \bar{\ell}_i \gamma^{\mu} \mathcal{P}_R \ell_j$$

 $\Delta L = 2$ right-handed scalar $\Delta_1 \sim (1,2)$

$$\mathcal{L} = \lambda_1^{ij} \Delta_1 \ell_i^T C P_R \ell_j + h.c.$$

left-handed scalar $\Delta_3 \sim (3,1)$

$$\mathcal{L} = -\frac{\lambda_3^{ij}}{\sqrt{2}} L_i^T C i \sigma_2 \vec{\sigma} \cdot \vec{\Delta}_3 P_L L_j + h.c.$$

vector $\Delta_2 \sim (2, \frac{3}{2})$

$$\mathcal{L} = \lambda_2^{ij} \Delta_{2\mu\alpha} L_{i\beta}^T \gamma^{\mu} P_R \ell_j \epsilon_{\alpha\beta} + h.c.$$

assumption: real and symmetric Yukawa coupling matrices

related work: Dev, Mohapatra, Zhang 1711.08430, also 1712.03642, 1803.11167

Existing (low-energy) precision constraints [LI,MS 1809.07924]

- LFV trilepton decays, $\ell \to \ell_1 \bar{\ell}_2 \bar{\ell}_3$
- Muonium antimuonium conversion, $\mu^+e^- \rightarrow \mu^-e^+$
- anomalous magnetic (and electric) dipole moments, a_{ℓ}
- LEP/LHC searches
- lepton flavour non-universality, $\ell \to \ell' \nu \bar{\nu}$

Existing (low-energy) precision constraints [LI,MS 1809.07924]

- LFV trilepton decays, $\ell \to \ell_1 \bar{\ell}_2 \bar{\ell}_3$
- Muonium antimuonium conversion, $\mu^+e^- \rightarrow \mu^-e^+$
- anomalous magnetic (and electric) dipole moments, a_{ℓ}
- LEP/LHC searches
- lepton flavour non-universality, $\ell \to \ell' \nu \bar{\nu}$

Future sensitivity improvements at e.g. Belle 2, Mu3E, ...

Existing (low-energy) precision constraints [LI,MS 1809.07924]

- LFV trilepton decays, $\ell \to \ell_1 \bar{\ell}_2 \bar{\ell}_3$
- Muonium antimuonium conversion, $\mu^+ e^- \rightarrow \mu^- e^+$
- anomalous magnetic (and electric) dipole moments, a_{ℓ}
- LEP/LHC searches
- lepton flavour non-universality, $\ell \to \ell' \nu \bar{\nu}$

Future sensitivity improvements at e.g. Belle 2, Mu3E, ...

Off-shell production $H_{1\mu}:~e^+e^ightarrow e^\pm\mu^\mp(e^\pm au^\mp)$ [Li,MS 1809.07924]

$$\mathcal{L} = y_1^{ij} \mathbf{H}_{1\mu} \bar{L}_i \gamma^{\mu} P_L L_j$$

Basic cuts: $p_T > 10$ GeV and $|\eta| < 2.5$

Four collider configurations: CEPC: 5 ab^{-1} at 240 GeV FCC-ee: 16 ab^{-1} at 240 GeV ILC500: 4 ab^{-1} at 500 GeV CLIC: 5 ab^{-1} at 3 TeV

au efficiency not included in figure 60% au eff. \Rightarrow 77% sensitivity reduction for 1 au $H_{1\mu}$: $e^+e^-
ightarrow \mu^\pm au^\mp$ [Li,MS 1809.07924]

rel. couplings $|y^{e\mu}y^{e\tau}|$ $e^+ + \mu^+ \mu^+ e^+ + \mu^+ \tau^+$ $e^- + \mu^- \mu^- \mu^-$ $H_{1\mu}$: $e^+e^-
ightarrow \mu^\pm au^\mp$ [Li,MS 1809.07924]

Same-sign lepton collider - Δ_1 : $e^-e^-
ightarrow \ell^-\ell'^-$ [LI,MS 1809.07924]

smaller integrated luminosity ${\cal L} = 500 \, {\rm fb}^{-1} \label{eq:L}$

On-shell production $H_{1\mu}$: $e^+e^-
ightarrow e^{\pm}\mu^{\mp}(e^{\pm}\tau^{\mp}) + H_1$ [Li,MS in preparation]

$$\begin{aligned} \mathcal{L} = & y_1^{ij} \mathcal{H}_{1\mu} \bar{L}_i \gamma^{\mu} \mathcal{P}_L \mathcal{L}_j \\ &+ y_3^{ij} \bar{L}_i \gamma^{\mu} \vec{\sigma} \cdot \mathcal{H}_{3\mu} \mathcal{P}_L \mathcal{L}_j \end{aligned}$$

Cuts: $p_T > 10$ GeV and $|\eta| < 2.5$

Five collider configurations: CEPC: 5 ab^{-1} at 240 GeV FCC-ee: 16 ab^{-1} at 240 GeV ILC (500 GeV): 4 ab^{-1} at 500 GeV ILC (1TeV): 1 ab^{-1} at 1 TeV CLIC: 5 ab^{-1} at 3 TeV

 τ efficiency not included in figure 60% τ eff. \Rightarrow 77% sensitivity reduction for 1 τ

Conclusions

Conclusions

colliders complementary way to search for charged LFV

 $\mu\leftrightarrow e$ flavour: stringent limits from low-energy precision exp.

 $\tau \leftrightarrow \ell$ flavour complementary sensitivity at colliders

colliders test more Lorentz structures

best for operators which are difficult to constrain at low energy

Conclusions cont.

Conclusions cont.

Conclusions cont.

Backup slides

$$\mathcal{Q}_{ledq} = (\bar{L}^{lpha}\ell)(\bar{d}Q^{lpha}) \qquad \qquad \mathcal{Q}_{lequ}^{(1)} = (\bar{L}^{lpha}\ell)\epsilon_{lphaeta}(\bar{Q}^{eta}u)$$

Relevant Wilson coefficients $\Xi^{u,d}$ of SM EFT

$$-\mathcal{L} = \Xi_{ij,kk}^{d} \left(\mathcal{Q}_{ledq} \right)_{ij,kk} + \Xi_{ij,kk}^{u} \left(\mathcal{Q}_{lequ}^{(1)} \right)_{ij,kk} + \text{h.c.} .$$

Effective four fermion Lagrangian

$$\begin{aligned} \mathcal{L}_{4f} &= \Xi_{ij,kl}^{Cd} (\bar{\nu}_{Li} \ell_{Rj}) (\bar{d}_{Rk} u_{Ll}) + \Xi_{ij,kl}^{Nd} (\bar{\ell}_{Li} \ell_{Rj}) (\bar{d}_{Rk} d_{Ll}) \\ &+ \Xi_{ij,kl}^{Cu} (\bar{\nu}_{Li} \ell_{Rj}) (\bar{d}_{Lk} u_{Rl}) + \Xi_{ij,kl}^{Nu} (\bar{\ell}_{Li} \ell_{Rj}) (\bar{u}_{Lk} u_{Rl}) \;. \end{aligned}$$

Scalar Operators

$$\mathcal{Q}_{\textit{ledq}} = (\bar{L}^{lpha}\ell)(\bar{d}Q^{lpha}) \qquad \qquad \mathcal{Q}^{(1)}_{\textit{lequ}} = (\bar{L}^{lpha}\ell)\epsilon_{lphaeta}(\bar{Q}^{eta}u)$$

Relevant Wilson coefficients $\Xi^{u,d}$ of SM EFT

$$-\mathcal{L} = \Xi_{ij,kk}^{d} \left(\mathcal{Q}_{ledq} \right)_{ij,kk} + \Xi_{ij,kk}^{u} \left(\mathcal{Q}_{lequ}^{(1)} \right)_{ij,kk} + \text{h.c.}$$

Effective four fermion Lagrangian

$$\begin{aligned} \mathcal{L}_{4f} &= \Xi_{ij,kl}^{Cd} (\bar{\nu}_{Li} \ell_{Rj}) (\bar{d}_{Rk} u_{Ll}) + \Xi_{ij,kl}^{Nd} (\bar{\ell}_{Li} \ell_{Rj}) (\bar{d}_{Rk} d_{Ll}) \\ &+ \Xi_{ij,kl}^{Cu} (\bar{\nu}_{Li} \ell_{Rj}) (\bar{d}_{Lk} u_{Rl}) + \Xi_{ij,kl}^{Nu} (\bar{\ell}_{Li} \ell_{Rj}) (\bar{u}_{Lk} u_{Rl}) \;. \end{aligned}$$

Thus the most general four fermion coefficients are

$$\begin{split} \Xi_{ij,kl}^{Nd} &= U_{ii'}^{\ell*} \, V_{lk}^{d} \, \Xi_{ij,kk}^{d} & \qquad \Xi_{ij,kl}^{Cd} &= U_{ii'}^{\nu*} \, V_{lk}^{u} \, \Xi_{i'j,kk}^{d} \\ \Xi_{ij,kl}^{Nu} &= -U_{ii'}^{\ell*} \, V_{kl}^{u*} \, \Xi_{ij,ll}^{u} & \qquad \Xi_{ij,kl}^{Cu} &= U_{ii'}^{\nu*} \, V_{kl}^{d*} \, \Xi_{i'j,ll}^{u} \end{split}$$

In general there is quark flavour violation.

Scalar Operators

$$\mathcal{Q}_{\textit{ledq}} = (ar{L}^lpha \ell) (ar{d} Q^lpha) \qquad \qquad \mathcal{Q}^{(1)}_{\textit{lequ}} = (ar{L}^lpha \ell) \epsilon_{lpha eta} (ar{Q}^eta u)$$

Relevant Wilson coefficients $\Xi^{u,d}$ of SM EFT

$$-\mathcal{L} = \Xi_{ij,kk}^{d} \left(\mathcal{Q}_{ledq} \right)_{ij,kk} + \Xi_{ij,kk}^{u} \left(\mathcal{Q}_{lequ}^{(1)} \right)_{ij,kk} + \text{h.c.}$$

Effective four fermion Lagrangian

$$\begin{aligned} \mathcal{L}_{4f} &= \Xi_{ij,kl}^{Cd} (\bar{\nu}_{Li} \ell_{Rj}) (\bar{d}_{Rk} u_{Ll}) + \Xi_{ij,kl}^{Nd} (\bar{\ell}_{Li} \ell_{Rj}) (\bar{d}_{Rk} d_{Ll}) \\ &+ \Xi_{ij,kl}^{Cu} (\bar{\nu}_{Li} \ell_{Rj}) (\bar{d}_{Lk} u_{Rl}) + \Xi_{ij,kl}^{Nu} (\bar{\ell}_{Li} \ell_{Rj}) (\bar{u}_{Lk} u_{Rl}) \;. \end{aligned}$$

Choose basis in which charged lepton mass matrix is diagonal as well as $\Xi_{ii,kk}^{N?}$

$$\begin{aligned} \Xi_{ij,kl}^{Nd} &= \delta_{kl} \Xi_{ij,kk}^{d} & \Xi_{ij,kl}^{Cd} &= U_{ii'}^* \, V_{kl}^* \Xi_{i'j,kk}^{d} \\ \Xi_{ij,kl}^{Nu} &= -\delta_{kl} \Xi_{ij,kk}^{u} & \Xi_{ij,kl}^{Cu} &= U_{ii'}^* \, V_{kl}^* \Xi_{i'j,ll}^{u} \end{aligned}$$

 \Rightarrow No tree-level FCNC processes.

Scalar Operators

$$\mathcal{Q}_{\textit{ledg}} = (ar{L}^lpha \ell) (ar{d} Q^lpha) \qquad \qquad \mathcal{Q}^{(1)}_{\textit{lequ}} = (ar{L}^lpha \ell) \epsilon_{lpha eta} (ar{Q}^eta u)$$

Relevant Wilson coefficients $\Xi^{u,d}$ of SM EFT

$$-\mathcal{L} = \Xi_{ij,kk}^{d} \left(\mathcal{Q}_{ledq} \right)_{ij,kk} + \Xi_{ij,kk}^{u} \left(\mathcal{Q}_{lequ}^{(1)} \right)_{ij,kk} + \text{h.c.}$$

Effective four fermion Lagrangian

$$\begin{aligned} \mathcal{L}_{4f} &= \Xi_{ij,kl}^{Cd} (\bar{\nu}_{Li} \ell_{Rj}) (\bar{d}_{Rk} u_{Ll}) + \Xi_{ij,kl}^{Nd} (\bar{\ell}_{Li} \ell_{Rj}) (\bar{d}_{Rk} d_{Ll}) \\ &+ \Xi_{ij,kl}^{Cu} (\bar{\nu}_{Li} \ell_{Rj}) (\bar{d}_{Lk} u_{Rl}) + \Xi_{ij,kl}^{Nu} (\bar{\ell}_{Li} \ell_{Rj}) (\bar{u}_{Lk} u_{Rl}) \;. \end{aligned}$$

Choose basis in which charged lepton mass matrix is diagonal as well as $\Xi_{ii\ kk}^{N?}$

$$\begin{aligned} \Xi_{ij,kl}^{Nd} &= \delta_{kl} \Xi_{ij,kk}^{d} & \Xi_{ij,kl}^{Cd} &= U_{ii'}^* \, V_{kl}^* \Xi_{i'j,kk}^{d} \\ \Xi_{ij,kl}^{Nu} &= -\delta_{kl} \Xi_{ij,kk}^{u} & \Xi_{ij,kl}^{Cu} &= U_{ii'}^* \, V_{kl}^* \Xi_{i'j,ll}^{u} \end{aligned}$$

 \Rightarrow No tree-level FCNC processes.

Renormalization Group Corrections

• Following the standard discussion at NLO

Buchalla, Buras, Lautenbacher hep-ph/9512380

$$\Xi(\mu) = \Xi(\mu_0) \left(\frac{\alpha_s(\mu)}{\alpha_s(\mu_0)}\right)^{\frac{\gamma_0}{2\beta_0}}$$

with coefficients

$$\beta_0 = 11 - 2n_F/3$$
 and $\gamma_0 = 6C_2(3) = 8$

Wilson coefficients become larger at smaller scales.
 ⇒ Increases reach of precision experiments

Renormalization Group Corrections

• Following the standard discussion at NLO

Buchalla, Buras, Lautenbacher hep-ph/9512380

$$\Xi(\mu) = \Xi(\mu_0) \left(\frac{\alpha_s(\mu)}{\alpha_s(\mu_0)}\right)^{\frac{\gamma_0}{2\beta_0}}$$

with coefficients

$$\beta_0 = 11 - 2n_F/3$$
 and $\gamma_0 = 6C_2(3) = 8$

- Wilson coefficients become larger at smaller scales.
- \Rightarrow Increases reach of precision experiments

Precision Experiments

 $\mu - e$ conversion in nuclei

$\mu - e$ Conversion

- Agnostic about mediation mechanism
- Following discussion in

Gonzalez, Gutsche, Helo, Kovalenko, Lyubovitskij, Schmidt 1303.0596

Dimensionless $\mu - e$ conversion rate

$$R_{\mu e}^{(A,Z)} \equiv rac{\Gamma(\mu^- + (A,Z) o e^- + (A,Z))}{\Gamma(\mu^- + (A,Z) o
u_\mu + (A,Z-1))}$$

with muon conversion rate

$$\Gamma(\mu^{-}+(A,Z)\to e^{-}+(A,Z)) = \left|\Xi_{ij,kl}^{Nu,Nd}\right|^{2} \times \mathcal{F} \times \frac{p_{e}E_{e}\left(\mathcal{M}_{p}+\mathcal{M}_{n}\right)^{2}}{2\pi}$$

${\mathcal F}$ depends on mediation mechanism

No dependence on phase of Ξ if there is only one operator.

Strongest limit for first generation quarks,

but non-negligible for other quarks if pure direct nuclear mediation

$\mu - e$ Conversion

- Agnostic about mediation mechanism
- Following discussion in

Gonzalez, Gutsche, Helo, Kovalenko, Lyubovitskij, Schmidt 1303.0596

	⁴⁸ Ti	¹⁹⁷ Au	²⁰⁸ Pb
$R_{\mu e}^{\max}$	4.3×10^{-11}	$7.0 imes10^{-13}$	4.6×10^{-11}
ūu	1100 [870]	2100 [1700]	760 [610]
₫d	1100 [930]	2200 [1900]	780 [680]
<u></u> 55	480 [-]	950 [-]	340 [-]
īс	150 [-]	290 [-]	110 [-]
Бb	84 [-]	170 [-]	61 [-]

Direct nuclear mediation [Meson mediation]

Strongest limit for first generation quarks,

but non-negligible for other quarks if pure direct nuclear mediation

$\mu-e \ {\rm Conversion}$

- Agnostic about mediation mechanism
- Following discussion in

Gonzalez, Gutsche, Helo, Kovalenko, Lyubovitskij, Schmidt 1303.0596

	⁴⁸ Ti	¹⁹⁷ Au	²⁰⁸ Pb
$R_{\mu e}^{\max}$	4.3×10^{-11}	$7.0 imes10^{-13}$	4.6×10^{-11}
ūu	1100 [870]	2100 [1700]	760 [610]
₫d	1100 [930]	2200 [1900]	780 [680]
<u></u> 55	480 [-]	950 [-]	340 [-]
īс	150 [-]	290 [-]	110 [-]
Бb	84 [-]	170 [-]	61 [-]

Direct nuclear mediation [Meson mediation]

Strongest limit for first generation quarks,

but non-negligible for other quarks if pure direct nuclear mediation
LFV Semileptonic τ Decays

- Only light quarks u,d,s
- Weak dependence on phase
- $f_0: \varphi_m$ parameterises quark content
- Quark FCNC parameterised by λ

 $\Xi_{ij,kl}^{u} = \lambda \Xi_{ij,ll}^{u} V_{kl} \quad \Xi_{ij,kl}^{d} = \lambda \Xi_{ij,kk}^{d} V_{kl}$

decay	$\operatorname{Br}_i^{max}$	cutoff scale Λ [TeV]			
		$\Xi^{u}_{ij,uu}$	$\Xi^d_{ij,dd}$	$\Xi^d_{ij,ss}$	
$ au^- ightarrow e^- \pi^0$	$8.0 imes10^{-8}$	10	10	-	
$\tau^- ightarrow e^- \eta$	$9.2 imes 10^{-8}$	34	34	7.9	
$ au^- ightarrow e^- \eta'$	1.6×10^{-7}	42	42	12	
$ au^- ightarrow e^- K_S^0$	$2.6 imes10^{-8}$	-	$7.8\sqrt{\lambda}$	$7.8\sqrt{\lambda}$	
$ au^- o e^-(f_0(980) o \pi^+\pi^-)$	$3.2 imes 10^{-8}$	$13\sqrt{\sin \varphi_m}$	$13\sqrt{\sin \varphi_m}$	$16\sqrt{\cos \varphi_m}$	
$\tau^- \to \mu^- \pi^0$	1.1×10^{-7}	9.0 - 9.6	9.0 - 9.6	-	
$\tau^- \rightarrow \mu^- \eta$	6.5×10^{-8}	36 - 38	36 - 38	8.4 - 8.9	
$\tau^- \to \mu^- \eta'$	$1.3 imes10^{-7}$	42 - 46	42 - 46	12 - 13	
$ au^- ightarrow \mu^- K_S^0$	$2.3 imes10^{-8}$	-	$(7.8-8.3)\sqrt{\lambda}$	$(7.8-8.3)\sqrt{\lambda}$	
$\tau^- \to \mu^-(f_0(980) \to \pi^+\pi^-)$	$3.4 imes10^{-8}$	$(12-14)\sqrt{\sin arphi_m}$	$(12-14)\sqrt{\sin arphi_m}$	$(15-16)\sqrt{\cos arphi_m}$	

Leptonic Neutral Meson Decays $M^0 \rightarrow \ell_i^+ \ell_i^-$

 Br_i^{max}

Quark FCNC parameterised by λ

decay

$$\Xi^{u}_{ij,kl} = \lambda \Xi^{u}_{ij,ll} V_{kl} \qquad \Xi^{d}_{ij,kl} = \lambda \Xi^{d}_{ij,kk} V_{kl}$$

For $\lambda = 0$ only constraints from $\pi^0, \eta^{(\prime)}$ decays

cutoff scale Λ [TeV]

		$\Xi^u_{ij,uu}$	$\Xi^d_{ij,dd}$	$\Xi^d_{ij,ss}$	$\Xi^u_{ij,cc}$	$\Xi^d_{ij,bb}$
$\pi^0 ightarrow \mu^+ e^-$	3.8×10^{-10}	2.2	2.2	-	-	-
$\pi^0 ightarrow \mu^- e^+$	$3.4 imes10^{-9}$	1.2	1.2	-	-	-
$\pi^0 \rightarrow \mu^+ e^- + \mu^- e^+$	$3.6 imes10^{-10}$	2.6	2.6	-	-	-
$\eta \rightarrow \mu^+ e^- + \mu^- e^+$	$6 imes 10^{-6}$	0.52	0.52	0.12	-	-
$\eta' ightarrow e \mu$	$4.7 imes10^{-4}$	0.091	0.091	0.026	-	-
$K_L^0 ightarrow e^{\pm} \mu^{\mp}$	4.7×10^{-12}	-	86 $\sqrt{\lambda}$	86 $\sqrt{\lambda}$	-	-
$D^0 o e^\pm \mu^\mp$	$2.6 imes10^{-7}$	$6.4\sqrt{\lambda}$	-	-	$6.4\sqrt{\lambda}$	-
$B^0 o e^\pm \mu^\mp$	$2.8 imes10^{-9}$	-	$10\sqrt{\lambda}$	-	-	$6.6\sqrt{\lambda}$
$B^0 o e^\pm au^\mp$	$2.8 imes10^{-5}$	-	0.97 $\sqrt{\lambda}$	-	-	$0.62\sqrt{\lambda}$
$B^0 o \mu^\pm \tau^\mp$	$2.2 imes 10^{-2}$	-	$0.18\sqrt{\lambda}$	-	-	$0.12\sqrt{\lambda}$

Leptonic Charged Meson Decays $M^+ \rightarrow \ell_i^+ \nu$

- $R_M = \frac{\operatorname{Br}(M^+ \to e^+ \nu)}{\operatorname{Br}(M^+ \to \mu^+ \nu)}$
- Theoretical error for R_{π} (R_{K}) about 5%
- Improvement by factor 20 (2) possible
- 🗸 indicates constraints
- Second index of Λ corresponds to charged lepton

decay	constraint	cutoff scale Λ [TeV]		Wilson coefficients				
		$\Lambda_{\mu e, e\mu, e au}$	$\Lambda_{ au e, au \mu, \mu au}$	$\Xi^u_{ij,uu}$	$\Xi^d_{ij,dd}$	$\Xi^d_{ij,ss}$	$\Xi^u_{ij,cc}$	$\Xi^d_{ij,bb}$
R_{π}	$R_{\pi}^{exp} \pm 5\%$	25 - 280	25 - 260	V		-	-	-
R _K	$R_K^{ m exp}\pm5\%$	24 - 160	24 - 150	\checkmark	-	(-	-
${\sf Br}(D^+ o e^+ u)$	$< 8.8 imes 10^{-6}$	2.8 - 2.9	2.9	-	\checkmark	-	\checkmark	-
${\sf Br}(D^+_s o e^+ u)$	$< 8.3 imes 10^{-5}$	3.2 - 3.3	3.2 - 3.3	-	-	\checkmark	Ø	-
${\sf Br}(B^+ o e^+ u)$	$< 9.8 imes 10^{-7}$	2.0	2.0	\checkmark	-	-	-	(
$Br(\pi^+ o \mu^+ \nu)$	$Br^{exp}\pm 5\%$	1.9 - 7.4	1.9 - 9.4	V	V	-	-	-
${\sf Br}({\cal K}^+ o\mu^+ u)$	${\sf Br}^{\sf exp}\pm5\%$	1.7 - 5.8	1.7 - 7.4	\checkmark	-	(-	-
${\sf Br}(D^+ o \mu^+ u)$	$(3.82 \pm 0.33) imes 10^{-4}$	1.1 - 2.7	1.1 - 3.4	-	\checkmark	-	\checkmark	-
${\sf Br}(D^+_s o \mu^+ u)$	$(5.56 \pm 0.25) imes 10^{-3}$	1.3 - 4.3	1.3 - 5.3	-	-	\checkmark	Ø	-
${\rm Br}(B^+ o \mu^+ \nu)$	$<$ 1.0 $ imes$ 10 $^{-6}$	1.9 - 2.7	1.7 - 3.0	\checkmark	-	-	-	(
${\rm Br}(D^+ \to \tau^+ \nu)$	$<1.2\times10^{-3}$	0.21 - 0.78	0.23 - 0.73	-	Ø	-	\checkmark	-
$Br(D_s^+ \rightarrow \tau^+ \nu)$	$(5.54 \pm 0.24) imes 10^{-2}$	0.33 - 1.2	0.33 - 1.1	-	-	((-
$Br(B^+ \rightarrow \tau^+ \nu)$	$(1.14\pm 0.27)\times 10^{-4}$	0.49 - 1.3	0.49 - 1.2	V	-	-	-	(

SM Background

• Main backgrounds: $t\bar{t}$, WW, $Z/\gamma^* \rightarrow \tau \tau$

ATLAS 8TeV 1503.04430

also W/Z plus jets, WZ/ZZ, single top and $W/Z + \gamma$

- ⇒ Efficiently reduced in exclusive 7 TeV analysis by rejecting jets and $E_T^{miss} < 20$ GeV
 - Modelling of main background agrees with ATLAS
 - Fake background estimated from data
- \Rightarrow Use background from ATLAS publications

SM Background

• Main backgrounds: $t\bar{t}$, WW, $Z/\gamma^* \rightarrow \tau \tau$

ATLAS 8TeV 1503.04430

also W/Z plus jets, WZ/ZZ, single top and $W/Z + \gamma$

- ⇒ Efficiently reduced in exclusive 7 TeV analysis by rejecting jets and $E_T^{miss} < 20$ GeV
 - Modelling of main background agrees with ATLAS
 - Fake background estimated from data
- \Rightarrow Use background from ATLAS publications

Selection Criteria

Same selection criteria as in ATLAS 7 and 8 TeV analyses.

- oppositely charged leptons
- Electrons: $E_T > 25$ GeV, $|\eta| < 1.37$ or $1.52 < |\eta| < 2.47$, tight identification criteria
- Muons: $p_T > 25$ GeV, $|\eta| < 2.4$
- Tau: $E_T > 25$ GeV, $0.03 < |\eta| < 2.47$
- Lepton isolation: scalar sum of lepton p_T within cone of ΔR = 0.2(0.4) is less than 10% (6%) of lepton p_T for 7 (8) TeV search
- Jets reconstructed anti- k_T algorithm with radius parameter 0.4
- 7 TeV analysis: jets rejected if $p_T > 30$ GeV or $E_T^{miss} < 25$ GeV
- Invariant mass of lepton pair: > 100(200) GeV in 7(8) TeV analysis
- azimuthal angle difference $\Delta \phi > 3(2.7)$ in 7 (8) TeV analysis

14 TeV projection

Same as 7 TeV exclusive analysis and $p_T(\ell) > 300$ GeV and $E_T^{miss} < 20$ GeV

Limits from LHC on Cutoff Scale in TeV

$\bar{\ell}_i \ell_j$ $\bar{q}q$		$ar{e}\mu$		$ar{e} au$	$ar{\mu} au$
	7 TeV	8 TeV	14 TeV	8 TeV	8 TeV
ūu	2.6	2.9	8.9	2.4	2.2
₫d	2.3	2.3	8.0	2.1	1.9
<u></u> 55	1.1	1.4	4.0	0.95	0.88
īс	0.97	1.3	3.6	0.82	0.78
Бb	0.74	1.0	2.7	0.63	0.61

- 8 TeV analysis gives only a slight improvement compared to 7 TeV despite 10 times more data because of large background
- $e\tau$ and $\mu\tau$ limits weaker than $e\mu$ because of low τ -tagging rate and higher fake background
- 14 TeV projection: same search strategy as 7 TeV exclusive search

cLFV D8 operator with 2 gluons and 2 leptons

process	exp. limit	operator	Λ [TeV]
	eμ		
$Br(\mu^{-}\frac{48}{22}\mathrm{Ti} ightarrow e^{-}\frac{48}{22}\mathrm{Ti})$	$<4.3\times10^{-12}$	$\mathcal{O}_X, \bar{\mathcal{O}}_X$	2.11
$Br(\mu^{-197}_{79}\mathrm{Au} ightarrow e^{-197}_{79}\mathrm{Au})$	$< 7 imes 10^{-13}$	$\mathcal{O}_X, \bar{\mathcal{O}}_X$	2.54
	e au		
${\sf Br}(au^+ o e^+ \pi^+ \pi^-)$	$< 2.3 imes 10^{-8}$	$\mathcal{O}_X, \bar{\mathcal{O}}_X$	0.42
${\sf Br}(au^- o e^- {\cal K}^+ {\cal K}^-)$	$< 3.4 imes 10^{-8}$	$\mathcal{O}_X, \bar{\mathcal{O}}_X$	0.37
${\sf Br}(au^- o e^- \eta)$	$< 9.2 imes 10^{-8}$	$\mathcal{O}'_X, \bar{\mathcal{O}}'_X$	0.40
${\sf Br}(au^- o e^- \eta')$	$< 1.6 imes 10^{-7}$	\mathcal{O}'_X , $\bar{\mathcal{O}}'_X$	0.44
	$\mu \tau$		
$Br(au^- o \mu^- \pi^+ \pi^-)$	$< 2.1 imes 10^{-8}$	$\mathcal{O}_X, \bar{\mathcal{O}}_X$	0.43
${\sf Br}(au^- o\mu^-{\sf K}^+{\sf K}^-)$	< 4.4 $ imes$ 10 ⁻⁸	$\mathcal{O}_X, \bar{\mathcal{O}}_X$	0.36
${\sf Br}(au^- o \mu^- \eta)$	$< 6.5 imes 10^{-8}$	$\mathcal{O}'_X, \bar{\mathcal{O}}'_X$	0.42
${\sf Br}(au^- o \mu^- \eta')$	$< 1.3 imes 10^{-7}$	$\mathcal{O}'_X, \bar{\mathcal{O}}'_X$	0.46

$$H_{1\mu}$$
: $e^+e^- \rightarrow e^{\pm}\mu^{\mp}(e^{\pm}\tau^{\mp})$

$$\mathcal{L} = y_1^{ij} \mathbf{H}_{1\mu} \bar{\ell}_i \gamma^{\mu} P_L \ell_j$$

same result for right-handed $H'_{1\mu}$

 τ efficiency not included in figure 60% τ eff. \Rightarrow 77% (60%) sensitivity reduction for 1 (2) τ leptons

$$H_2$$
: $e^+e^-
ightarrow e^\pm \mu^\mp (e^\pm \tau^\mp)$

$$\mathcal{L} = y_2^{ij} H_2^0 \overline{\ell}_i P_R \ell_j + h.c.$$

 $H_{1\mu}, H_2: e^+e^- \rightarrow \mu^{\pm}\tau^{\mp}$

$$\Delta_1$$
, $\Delta_{2\mu}$: $e^+e^-
ightarrow \ell^+\ell'^-$

 $H_{1\mu}$, H_2 : $e^-e^-
ightarrow \ell^-\ell^{\prime-}$

$$\Delta_1$$
, $\Delta_{2\mu}$: $e^-e^- o \ell^-\ell'^-$

relevant couplings $|\lambda^{ee}\lambda^{e\ell}|$ and $|\lambda^{ee}\lambda^{\mu\tau}|$

