Charged lepton flavour violation

Michael A. Schmidt

13 November 2018

The University of New South Wales

based on work in collaboration with Tong Li 1809.07924

Motivation

- neutrino oscillations \rightarrow lepton flavour violation (LFV)
- also charged LFV, processes $\ell \to \ell' X$, $\nu \notin X$
- in SM+ $m_{
 u}$ suppressed by unitarity, $\mathcal{A} \sim {\it G_F} \, m_{
 u}^2 \simeq 10^{-26}$
- many neutrino mass models have large charged LFV, e.g. inverse seesaw, radiative mass models
- could be completely unrelated to neutrino mass
- mostly searched for at low-energy precision experiments \rightarrow new possibilities at lepton colliders

 \rightarrow compare sensitivity to charged LFV at colliders to low-energy precision experiments using simplified models

complex scalar

$$\mathcal{L} = y_2^{ij} \mathbf{H}_2 \bar{\ell}_i P_R \ell_j + h.c.$$

left-handed vector

see Dev, Mohapatra, Zhang 1711.08430 for a similar study

$\mathcal{L} = y_1^{ij} \mathbf{H}_{1\mu} \bar{\ell}_i \gamma^{\mu} P_L \ell_j$

possibly from new gauge interaction

right-handed vector

$$\mathcal{L} = y_1^{\prime i j} \mathcal{H}_{1 \mu}^{\prime} \bar{\ell}_i \gamma^{\mu} \mathcal{P}_{\mathcal{R}} \ell_j$$

possibly from new gauge interaction

doubly-charged (right-handed) scalar

 $\mathcal{L} = \lambda_1^{ij} \Delta_1^{++} \bar{\ell_i^c} P_R \ell_j + h.c.$ e.g. Zee-Babu model

doubly-charged (left-handed) scalar

 $\mathcal{L} = -\lambda_3^{ij} \Delta_3^{++} \bar{\ell_i^c} P_L \ell_j + h.c. \qquad \text{e.g. type-II seesaw model}$

doubly-charged vector

 $\mathcal{L} = \lambda_2^{ij} \Delta_{2\mu}^{++} \bar{\ell}_i^c \gamma^{\mu} P_R \ell_j + h.c. \quad \text{e.g. embedded in a 331-model}$

general assumption: real and symmetric Yukawa coupling matrices

doubly-charged (right-handed) scalar

 $\mathcal{L} = \lambda_1^{ij} \Delta_1^{++} \bar{\ell_i^c} P_R \ell_j + h.c.$ e.g. Zee-Babu model

doubly-charged (left-handed) scalar

 $\mathcal{L} = -\lambda_3^{ij} \Delta_3^{++} \bar{\ell_i^c} P_L \ell_j + h.c. \qquad \text{e.g. type-II seesaw model}$

doubly-charged vector

 $\mathcal{L} = \lambda_2^{ij} \Delta_{2\mu}^{++} \bar{\ell}_i^c \gamma^{\mu} P_R \ell_j + h.c. \quad \text{e.g. embedded in a 331-model}$

general assumption: real and symmetric Yukawa coupling matrices

Low-energy precision constraints

- LFV trilepton decays, $\ell \to \ell_1 \bar{\ell}_2 \bar{\ell}_3$
- Muonium antimuonium conversion, $\mu^+e^-
 ightarrow \mu^-e^+$
- LFV radiative lepton decays, $\ell \to \ell' \gamma$
- anomalous magnetic (and electric) dipole moments, a_{ℓ}

Improved sensitivity at future/current experiments: Belle-II, COMET, Mu3E, ...

Low-energy precision constraints

- LFV trilepton decays, $\ell \to \ell_1 \bar{\ell}_2 \bar{\ell}_3$
- Muonium antimuonium conversion, $\mu^+e^-
 ightarrow \mu^-e^+$
- LFV radiative lepton decays, $\ell \to \ell' \gamma$
- anomalous magnetic (and electric) dipole moments, a_{ℓ}

Improved sensitivity at future/current experiments: Belle-II, COMET, Mu3E, ...

Opposite-sign lepton collider

- Cicular Electron Positron Collider (CEPC): 5 ab⁻¹ at 240 GeV
- Future Circular Collider (FCC)-ee: 16 ab⁻¹ at 240 GeV
- International Linear Collider (ILC): 4 ab⁻¹ at 500 GeV
- muon collider: 1.8 ab^{-1} at 3 TeV

Basic cuts: $p_T > 10$ GeV and $|\eta| < 2.5$

$$H_{1\mu}$$
: $e^+e^-
ightarrow e^{\pm}\mu^{\mp}(e^{\pm}\tau^{\mp})$

$$\mathcal{L} = y_1^{ij} \mathbf{H}_{1\mu} \bar{\ell}_i \gamma^{\mu} P_L \ell_j$$

same result for right-handed $H'_{1\mu}$

 τ efficiency not included in figure 60% τ eff. \Rightarrow 77% (60%) sensitivity reduction for 1 (2) τ leptons

$$H_2$$
: $e^+e^-
ightarrow e^\pm \mu^\mp (e^\pm \tau^\mp)$

$$\mathcal{L} = y_2^{ij} H_2^0 \overline{\ell}_i P_R \ell_j + h.c.$$

 $H_{1\mu}, H_2: e^+e^- \rightarrow \mu^{\pm}\tau^{\mp}$

$$\Delta_1$$
, $\Delta_{2\mu}$: $e^+e^-
ightarrow \ell^+\ell'^-$

Same-sign lepton collider

 $H_{1\mu}$, H_2 : $e^-e^-
ightarrow \ell^-\ell'^-$

$$\Delta_1$$
, $\Delta_{2\mu}$: $e^-e^-
ightarrow \ell^-\ell'^-$

relevant couplings $|\lambda^{ee}\lambda^{e\ell}|$ and $|\lambda^{ee}\lambda^{\mu\tau}|$

Hadron colliders – LHC

Charged LFV at hadron colliders: quarks

 $\mathcal{Q}_{\textit{ledq}} = (\bar{L}^{lpha}\ell)(\bar{d}Q^{lpha}) , \qquad \mathcal{Q}^{(1)}_{\textit{lequ}} = (\bar{L}^{lpha}\ell)\epsilon_{lphaeta}(\bar{Q}^{eta}u)$

Charged LFV at hadron colliders: gluons

(lepton) colliders complementary way to search for charged LFV

 $\mu\leftrightarrow e$ flavour: stringent limits from low-energy precision exp.

 $\tau \leftrightarrow \ell$ flavour: future lepton colliders like CEPC provide competitive limits

similar conclusions for hadron colliders

LHC provides most stringent limits for τ flavour also for operators with derivatives and $G\tilde{G}$

(lepton) colliders complementary way to search for charged LFV

 $\mu\leftrightarrow e$ flavour: stringent limits from low-energy precision exp.

 $\tau \leftrightarrow \ell$ flavour: future lepton colliders like CEPC provide competitive limits

similar conclusions for hadron colliders

LHC provides most stringent limits for τ flavour also for operators with derivatives and $G\tilde{G}$

Backup Slides

Tri-lepton decays

Muonium-Antimuonium Conversion

Radiative lepton decays

