From the trees to the forest

the search for the origin of neutrino mass

Michael A. Schmidt

14 September 2017

LAUNCH 2017

Origin of neutrino mass: Neutrino mass generation mechanisms

- Dirac vs. Majorana neutrinos
- \Rightarrow Majorana mass generated by Weinberg operator

$$\mathcal{L}_{\nu} = \frac{1}{2} \frac{\kappa}{\Lambda} L H L H + \text{h.c.}$$

- Effective operator LHLH suppressed by $\Lambda \gg \langle H \rangle \simeq 100 {
 m GeV} \gg m_{\nu}$
- · Can be generated via seesaw mechanisms, minimal UV completions

Minkowski; Yanagida; Glashow;Gell-Mann, Ramond, Slansky; Mohapatra, Senjanovic.

Origin of neutrino mass: Neutrino mass generation mechanisms

- Dirac vs. Majorana neutrinos
- \Rightarrow Majorana mass generated by Weinberg operator

$$\mathcal{L}_{\nu} = \frac{1}{2} \frac{\kappa}{\Lambda} LHLH + h.c.$$

- Effective operator LHLH suppressed by $\Lambda \gg \langle H \rangle \simeq 100 \text{GeV} \gg m_{\nu}$
- Can be generated via seesaw mechanisms, minimal UV completions
 Minkowski; Yanaeida; Glashow;Gell-Mann, Ramond, Slansky; Mohapatra, Senjanovic.

minkowski, Yanagida; Glasnow;Gell-Mann, Ramono, Slansky; Monapatra, Senjanovic.

However not the only possibility to generate neutrino mass

among many other possibilities

Origin of neutrino mass: Neutrino mass generation mechanisms

- Dirac vs. Majorana neutrinos
- \Rightarrow Majorana mass generated by Weinberg operator

$$\mathcal{L}_{\nu} = \frac{1}{2} \frac{\kappa}{\Lambda} LHLH + \text{h.c.}$$

- Effective operator LHLH suppressed by $\Lambda \gg \langle H \rangle \simeq 100 \text{GeV} \gg m_{\nu}$
- Can be generated via seesaw mechanisms, minimal UV completions

Minkowski; Yanagida; Glashow;Gell-Mann, Ramond, Slansky; Mohapatra, Senjanovic.

However not the only possibility to generate neutrino mass

among many other possibilities

Why should I be interested in anything beyond the seesaw mechanisms?

Connection to other physics: Dark matter (DM)

- Scotogenic model Ma hep-ph/0601225
- Discrete symmetry $N \rightarrow -N$, $\eta \rightarrow -\eta$ to forbid tree-level contribution
- Lightest new particle is a DM candidate

 $N \sim (1, 1, 0)$ $\eta \sim (1, 2, \frac{1}{2})$

• Scalar DM:

very similar to same as inert doublet model LOPEZ-HONOREZ, NEZRI, Oliver, Tytgat hep-ph/0612275

• Fermionic WIMP DM:

close connection with neutrino mass due to bounds from lepton flavour violation $_{\rm recent \, study: \, Vicente, \, Yaguna \, 1412.2545, \, Lindner, \, Platscher, \, Yaguna, \, Merle \, 1608.00577}$

• Fermionic FIMP DM:

one neutrino (almost) massless. Otherwise DM phenomenology mostly decoupled from neutrino physics Molinaro, Yaguna, Zapata 1405.1259

Connection to other physics: B physics anomalies (1)

Hints for violations of LFU in $R_{K^{(*)}}$ and $R_{D^{(*)}}$

$$R_{K^{(*)}} = \frac{\Gamma(\bar{B} \to \bar{K}^{(*)}\mu^+\mu^-)}{\Gamma(\bar{B} \to \bar{K}^{(*)}e^+e^-)}$$

$$\mathsf{R}_{D^{(*)}} = rac{\mathsf{\Gamma}(\bar{B} o D^{(*)} au ar{
u})}{\mathsf{\Gamma}(\bar{B} o D^{(*)} \ell ar{
u})}$$

Connection to other physics: B physics anomalies (1)

Hints for violations of LFU in $R_{K^{(*)}}$ and $R_{D^{(*)}}$

$$R_{K^{(*)}} = \frac{\Gamma(\bar{B} \to \bar{K}^{(*)}\mu^+\mu^-)}{\Gamma(\bar{B} \to \bar{K}^{(*)}e^+e^-)}$$

$$\mathsf{R}_{D^{(*)}} = \frac{\mathsf{\Gamma}(\bar{B} \to D^{(*)}\tau\bar{\nu})}{\mathsf{\Gamma}(\bar{B} \to D^{(*)}\ell\bar{\nu})}$$

Connection to other physics: B-physics anomalies (2)

One leptoquark $[\phi \sim (3, 1, -1/3)]$ model has been postulated as explanation of $b \rightarrow c$ anomalies at tree level but $b \rightarrow s$ through one-loop box diagrams BALLEC Neubert 1511.01900

Cai, Gargalionis, MS, Volkas 1704.05849

Connection to other physics: B-physics anomalies (3)

based on dimension-9 operator $\mathcal{O}_{11} = LLQd^cQd^c$ Angel, CAI, Rodd, MS, VOIKAS 1308.0463 Two LQS $\phi \sim (3, 1, -1/3)$ and Majorana fermion $\xi \sim (8, 1, 0)$

$$\mathbf{x} = \begin{pmatrix} 0 & 0 & \mathbf{x}_{13} \\ 0 & \mathbf{x}_{22} & \mathbf{x}_{23} \\ 0 & \mathbf{x}_{32} & \mathbf{x}_{33} \end{pmatrix}$$

Minimal scenario: only necessary to consider non-negligible w_{3a} (scale factor)

$$-x_{13} - x_{23} - x_{33}$$

Important points:

- x_{13} cannot be turned off *ad libitum* $\Rightarrow \mu N \rightarrow eN$ serious constraint
- inconsistent with hierarchy $|x_{23}| \gg |x_{33}|$ needed for $R_{K^{(*)}}$ and $\tau \rightarrow \mu$ constraints

Connections to other physics

- \cdot Anomalous magnetic moment $(g-2)_{\mu}$
- New scalars can induce strong electroweak phase transition
- · New bosons help with stability of electroweak vacuum
- baryogenesis, leptogenesis

Connections to other physics

- \cdot Anomalous magnetic moment $(g-2)_{\mu}$
- New scalars can induce strong electroweak phase transition
- · New bosons help with stability of electroweak vacuum
- baryogenesis, leptogenesis

Interesting phenomenology testable in current/future experiments

Papers on radiative neutrino mass generation

Radiative neutrino mass at the MPI für Kernphysik

Consider operators of type

 $LLHH(H^{\dagger}H)^{n}$

possibly with multiple Higgs fields

Bonnet, Hernandez, Ota, Winter 0907.3143

Construct all possible topologies:

- tree-level topologies Bonnet, Hernandez, Ota, Winter 0907.3143
- 1-loop topologies of Weinberg operator Bonnet, Hirsch, Ota, Winter 1204.5862
- 2-loop topologies of Weinberg operator Arisitizabat Sierra, Degee, Dorame, Hirsch 1411.7038
- 1-loop topologies of dimension-7 operator Cepedello, Hirsch, Helo 1705.01489

The dashed lines always denote scalars and solid lines are either fermions or scalars.

dimension-7 operator at tree-level

electroweak triplet fermion quadruplet scalar

Babu, Nandi, Tavartkiladze 0905.2710

Consider operators of type

 $LLHH(H^{\dagger}H)^{n}$

possibly with multiple Higgs fields

Bonnet, Hernandez, Ota, Winter 0907.3143

Construct all possible topologies:

- tree-level topologies Bonnet, Hernandez, Ota, Winter 0907.3143
- 1-loop topologies of Weinberg operator Bonnet, Hirsch, Ota, Winter 1204.5862
- 2-loop topologies of Weinberg operator Aristizabat Sierra, Degee, Dorame, Hirsch 1411.7038
- 1-loop topologies of dimension-7 operator Cepedello, Hirsch, Helo 1705.01489

dimension-7 operator at tree-level

electroweak triplet fermion quadruplet scalar Babu, Nandi, Tavartkiladze 0905.2710

Consider operators of type

 $LLHH(H^{\dagger}H)^{n}$

dimension-7 operator at tree-level

electroweak triplet fermion quadruplet scalar

Babu, Nandi, Tavartkiladze 0905.2710

possibly with multiple Higgs fields

Bonnet, Hernandez, Ota, Winter 0907.3143

Construct all possible topologies:

- tree-level topologies Bonnet, Hernandez, Ota, Winter 0907.3143
- 1-loop topologies of Weinberg operator Bonnet, Hirsch, Ota, Winter 1204.5862
- 2-loop topologies of Weinberg operator Arisitzabal Sierra, Degee, Dorame, Hirsch 1411.7038
- 1-loop topologies of dimension-7 operator Cepedello, Hirsch, Helo 1705.01489

Consider operators of type

 $LLHH(H^{\dagger}H)^{n}$

possibly with multiple Higgs fields

Bonnet, Hernandez, Ota, Winter 0907.3143

Construct all possible topologies:

- tree-level topologies Bonnet, Hernandez, Ota, Winter 0907.3143
- 1-loop topologies of Weinberg operator Bonnet, Hirsch, Ota, Winter 1204.5862
- 2-loop topologies of Weinberg operator Aristizabal Sierra, Degee, Dorame, Hirsch 1411.7038
- 1-loop topologies of dimension-7 operator Cepedello, Hirsch, Helo 1705.01489

electroweak triplet fermion quadruplet scalar

Babu, Nandi, Tavartkiladze 0905.2710

A systematic approach: $\Delta L = 2$ operators

• Black box theorem: Every $\Delta L = 2$ operator lead to neutrino mass

Schechter, Valle Phys. Rev. D25 (1982) 2951				
dimension	5	7	9	11
field strings ¹ Babu,Leung hep-ph/0106054; deGouvea, Jenkins 0708.1344 Lorentz structures ² Henning,Lu,Melia,Murayama 1512.03433	1 2	6 22	21 368	101 6632

 $^1 no$ gauge fields, no Lorentz structure, no products of SM singlets (e.g. LHLHH $^\dagger H)$

²includes hermitean conjugates

- Consider all possible $\Delta L=2$ operators Babu, Leung hep-ph/0106054; de Gouvea, Jenkins 0708.1344
- UV completions Angel, Rodd, Volkas 1212.6111
- Also describes other $\Delta L = 2$ violating processes: neutrinoless double beta decay, LNV processes at a collider
- Indication of quantum numbers of new particles

A systematic approach: $\Delta L = 2$ operators

• Black box theorem: Every $\Delta L = 2$ operator lead to neutrino mass

Schechter, Valle Phys. Rev. D25 (1982) 2951				
dimension	5	7	9	11
field strings ¹ Babu,Leung hep-ph/0106054; deGouvea, Jenkins 0708.1344 Lorentz structures ² Henning,Lu,Meiia,Murayama 1512.03433	1 2	6 22	21 368	101 6632

 $^1 no$ gauge fields, no Lorentz structure, no products of SM singlets (e.g. LHLHH $^\dagger H)$

²includes hermitean conjugates

- Consider all possible $\Delta L=2$ operators Babu, Leung hep-ph/0106054; de Gouvea, Jenkins 0708.1344
- UV completions Angel, Rodd, Volkas 1212.6111
- Also describes other $\Delta L = 2$ violating processes: neutrinoless double beta decay, LNV processes at a collider
- Indication of quantum numbers of new particles

Other criteria: topology, complexity, flavour, common features, ...

Any $\Delta L = 2$ operator induces Majorana mass term for neutrinos

Effective $\Delta L = 2$ operators of dimension 7

Any $\Delta L = 2$ operator induces Majorana mass term for neutrinos

Effective $\Delta L = 2$ operators of dimension 7

 $\begin{aligned} \mathcal{O}_1' &= LL \tilde{H} H H H & \mathcal{O}_2 &= LL L \bar{e} H \\ \mathcal{O}_3 &= LL Q \bar{d} H & \mathcal{O}_4 &= LL Q^{\dagger} \bar{u}^{\dagger} H & \mathcal{O}_8 &= L \bar{d} \bar{e}^{\dagger} \bar{u}^{\dagger} H \end{aligned}$

Scalars: leptoquarks, singly charged scalars, EW doublets and quartets

Fermions: vector-like quarks/charged leptons mixing with third generation

Scalar	Scalar	Operator
$(1, 2, \frac{1}{2}) (3, 2, \frac{1}{6}) (3, 2, \frac{1}{6})$	(1, 1, 1) $(3, 1, -\frac{1}{3})$ $(3, 3, -\frac{1}{3})$	$\mathcal{O}_{2,3,4} \ \mathcal{O}_{3,8} \ \mathcal{O}_{3}$

Leptoquarks $(3, 2, \frac{1}{6})$ and $(3, 1, -\frac{1}{3})$ used to explain R_K (and R_D)

Päs, Schumacher 1510.08757 Deppisch, Kulkarni, Päs, Schumacher 1603.07672

Any $\Delta L = 2$ operator induces Majorana mass term for neutrinos

Effective $\Delta L=$ 2 operators of dime	ension 7			
$\mathcal{O}_1' = LL \tilde{H} HHH$	$\mathcal{O}_2 = LLL\overline{e}I$	Ч		
$\mathcal{O}_3 = LLQ\bar{d}H$	$\mathcal{O}_4 = LLQ^{\dagger}$	$\bar{u}^{\dagger}H$ O	$_8 = L \overline{d} \overline{e}^\dagger \overline{u}^\dagger H$	
		Dirac fermion	Scalar	Operator
\land /		$(1, 2, -\frac{3}{2})$	(1, 1, 1)	\mathcal{O}_2
		$(3, 2, -\frac{5}{6})$	(1, 1, 1)	\mathcal{O}_3
		$(3, 1, \frac{2}{3})$	(1, 1, 1)	\mathcal{O}_3
		$(3, 1, \frac{2}{3})$	$(3, 2, \frac{1}{6})$	\mathcal{O}_3
		$(3, 2, -\frac{5}{6})$	$(3, 1, -\frac{1}{3})$	$\mathcal{O}_{3,8}$
Scalars: lentoquarks singly charg	ed	$(3, 2, -\frac{5}{6})$	$(3, 3, -\frac{1}{3})$	\mathcal{O}_3
scalars FW doublets and quarter	ts	$(3, 3, \frac{2}{3})$	$(3, 2, \frac{1}{6})$	\mathcal{O}_3
		$(3, 2, \frac{7}{6})$	(1, 1, 1)	\mathcal{O}_4
Fermions: vector-like quarks/char	ged	$(3, 1, -\frac{1}{3})$	(1, 1, 1)	\mathcal{O}_4
leptons mixing with third generation	ion	$(3, 2, \frac{7}{6})$	$(3, 2, \frac{1}{6})$	\mathcal{O}_8
		$(1, 2, -\frac{1}{2})$	$(3, 2, \frac{1}{6})$	\mathcal{O}_8

12

Any $\Delta L = 2$ operator induces Majorana mass term for neutrinos

Effective $\Delta L = 2$ operators of dimension 7

 $\begin{aligned} \mathcal{O}_1' &= LL\tilde{H}HHH & \mathcal{O}_2 &= LLL\bar{e}H \\ \mathcal{O}_3 &= LLQ\bar{d}H & \mathcal{O}_4 &= LLQ^\dagger\bar{u}^\dagger H & \mathcal{O}_8 &= L\bar{d}\bar{e}^\dagger\bar{u}^\dagger H \end{aligned}$

Scalars: leptoquarks, singly charged scalars, EW doublets and quartets

Fermions: vector-like quarks/charged leptons mixing with third generation

Dirac fermion	Scalar	Operator
(1,3,-1)	$(1, 4, \frac{3}{2})$	\mathcal{O}'_1

New particles at the LHC: (scalar) leptoquarks

Decay channels

 $\phi \to \ell q \qquad \phi \to \nu q$

Assuming 100% branching ratio

- \cdot first generation LQ (e): $m_{LQ}\gtrsim$ 1130 GeV $_{
 m CMS-PAS-EXO-16-043}$
- \cdot second generation LQ (μ): $m_{LQ}\gtrsim$ 1165 GeV_{CMS-PAS-EXO-16-007}
- third generation LQ (au): $m_{LQ}\gtrsim$ 900 GeV_{CMS-PAS-EXO-16-023}

New particles at the LHC: (scalar) leptoquarks

Decay channels

 $\phi \to \ell q \qquad \phi \to \nu q$

Assuming 100% branching ratio

- \cdot first generation LQ (e): $m_{LQ}\gtrsim$ 1130 GeV $_{
 m cMS-PAS-EXO-16-043}$
- \cdot second generation LQ (μ): $m_{LQ}\gtrsim$ 1165 GeV_{CMS-PAS-EXO-16-007}
- \cdot third generation LQ (au): $m_{LQ}\gtrsim$ 900 GeV_{CMS-PAS-EXO-16-023}

1-loop model (O_{3b}): ζ controls relative size of Yukawa couplings (like Casas-Ibarra parameter)

New particles at the LHC: vector-like quarks

В	Т	(BY)	(XT)	(XTB)
$(3, 1, -\frac{1}{3})$	$(3, 1, \frac{2}{3})$	$(3, 2, -\frac{5}{6})$	$(3, 2, \frac{7}{6})$	$(3, 3, \frac{2}{3})$

- Searched for at LHC looking using pair production
- Main decay channels to EW gauge bosons and Higgs

ATLAS 1504.04605 1409.5500 1505.04306 1705.10751 1606.03903 1509.04261 ATLAS-CONF-2016-032 CMS 1509.04177 1706.03408 1311.7667 1507.07129

Vector-like leptons

Е	(NE)	(ED)	(NED)
(1, 1, -1)	$(1, 2, -\frac{1}{2})$	$(1, 2, -\frac{3}{2})$	(1,3,-1)

currently no dedicated search at LHC

Uncolored scalars

- Charged scalars
 - doubly charged scalar: like-sign dilepton pairs (LNV)
 - singly charged scalar: similar to slepton pair production search
- Higher-dimensional EW multiplets (doublet, quadruplet, ...)
 - Drell-Yan production of charged scalar
 - possibly long lifetime, if small mass splitting
 - disappearing track signature

radiative neutrino mass interesting possibility

current experiments probe theory space \Rightarrow clear phenomenological signatures required

plethora of models

 \Rightarrow systematic approach needed

radiative neutrino mass interesting possibility

current experiments probe theory space → clear phenomenological signatures required

plethora of models

 \Rightarrow systematic approach needed

